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Basic useful formula

Special distribution

Binomial disributions
A random variable X has the binomial distribution with parameters n and p if X has a discrete
distribution for which the probability function as follows

f(x|n, p) =

{(n
x

)
px(1− p)n−x for x = 0, 1, 2, 3..., n,

0 otherwise

1 Lecture Note(10.19)

1.1 Mean and Variance(Scaling Formula)

Mean for the linear function can :
E(g(X)) = g(E(X)) g(X) = aX + b
E(b+

∑n
i=0 ai ∗Xi) = b+

∑n
i=0 ai ∗ E(Xi)

V ar(X) = EX2 − µ2xµ2X where µX = EX

Now one can derive the scaling formula for the variance of a linear transformation of a random
variable using the same kind of argument as above:

V ar(aX + b) = a2V ar(X)

σaX+b = a · σx

The variance of a linear combination (i.e. a sum) of random variable is more complicated
that the expectation of a linear combination of random variables; we’ll get to that later.

As a simple example , suppose we have some probability distribution for a temperature
measured in Fahrenheit, called X. Let’s suppose we have reported its mean and standard
deviation. if we want the mean and standard deviation of that temperature measured in
Centigrade

Y =
5

9
(X − 32) =

5

9
X − 160

9

EY =
5

9
EX − 160

9

σY =
5

9
σX

**Figure 1.1
Note this corresponds to mapping the ”confidence interval”[µX − σX , µX + σX ] by simply
mapping the endpoints under the linear transformation.

[µY − σY , µY + σY ]
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1.2 Moment generating function

This is a very useful trick in a variety of probability and stochastic models, particular in more
advanced settings. In this class, we will just illustrate it on some basic examples. The reason
that the moment generating function can simplify probability calculations is the same way
as a Laplace transform or a Fourier transform or a Z-transform can simplify calculations of
certain problems. They work when the problem has a certain symmetry or structure that
plays well with transform.

This will come out in later lecture, for now let’s just take a pedestrian approach and see how
the moment generating function works.
Fundamental property that gives the moment generating function(mgf)

MX(s) = EesX

( This is like the Laplace transformation of the pmf) s is a given number,(eg: 1,3 π), no
meaning. sX is a real value. its name is this:

EXm(mthmomentofX̄) =
( d
ds

)m
Mx(s)

∣∣
s=0

for any m = 0, 1, 2, · · ·

EXm is the mth moment of X (Easily to calculate derivative than integral.) The first and
second moment are important for computing mean and standard deviation.
Why does the moment generating property work?

For m = 1 :
d

ds
Mx(s) =

d

ds
EesX = E

d

ds
esX = EXesX

**meaning:
d

dx
: deterministic linear operation (derivative of a sum = sum of a derivative)

**(but have to do some careful justification if the sum is infinite in order to exchange deriva-
tives and infinite sums; but this does work provided s is sufficiently small.)

( d
ds

)m
Mx(s)

∣∣
s=0

Mx(s) = EXe9X = EX

Now let’s compute mean and standard deviation for come of the basic discrete random vari-
able models:

Discrete uniform distribution

R(x) = {x1, x2, .., xk}

px =
1

k
for x ∈ R(X)

µX = EX =
∑

x∈R(X)

xpx =
1

k

k∑
i=1

xi

V ar(X) = E((X − µX)2) =
∑

(X∈R(X)

(x− µx)2px =
1

k

k∑
i=1

(xi − µx)2
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σX =

√√√√1

k

k∑
i=1

(Xi − µX)2

(2) Binomial distribution(Bernoulli is a special case )

R(x) = {0, 1, 2, · · · , n}, px =

(
n

x

)
pxqn−x where q = 1− p

EX =
∑

x∈R(x)

xpx =
∑
x=0

x

(
n

x

)
pxqn−x

This can be evaluated (as can the second moment, but it requires clever manipulations of the
combinatorial coefficient )
Two cleaner ways to compute the mean and SD other than this discrete approach

• View the binomial random variable as a sum of n Bernoulli random variables; we will
talk more about that later.

• Moment generating function:

MX(s) = EesX =
∑

x∈R(X)

esXpx =

n∑
x=0

esX
(
n

x

)
pxqn−x =

n∑
x=0

(
n

x

)
(pes)xqn−x

= (pes + q)n

So now:
M ′X(s) = n(pes + q)n−1pes

M ′′X(s) = n(n− 1)(pes + q)n−2(pes)2 + n(pes + q)n−1pes

= n(pes + q)n−2pes((n− 1)pes + pes + q)

= n(pes + q)n−2pes(npes + q)

So the expected value for binomial distribution :

EX = M ′x(0) = n(pe0 + q)n−1pe0 = n(p+ q)n−1p = np

EX2 = M ′′X(0) = n(pe0 + q)n−2pe0(npe0 + q) = (np)2 + npq − (np)2

V ar(X) = EX2 − (EX)2 = np(np+ q)− (np)2

= (np)2 + npq − (np)2

V ar(X) = npq

σx =
√
npq

Image null hypothesis model where every voter was completely undecided and flopped a coin
to decide who they’d vote for. The average number of votes for a given candidate can be,
under this null hypothesis model, given by a random variable which is binomially distributed
with n=6 ∗ 106 and p = 1

2 (Bush won Florida by 537 votes) the standard deviation will be
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σX =
√
npq =

√
n× 1

2 ×
1
2 = 1

2

√
n ≈ 1200

So within interval [µX − σX , µX + σX ] = 3 ∗ 106 ± 1200. Which is ...
3) Hyper-geometric distribution? It/s a pain, we’ll deal with it later. Mgf doesn’t help here.
4) Poisson Distribution

R(X) = {0, 1, 2, ...}, px =
e−λλx

x!

It/s not so hard to compute the sums for the mean and second moment directly but for
practice, we’ll use mgf

MX(s) = EesX

=

inf∑
x=0

esx
e−λλx

x!

= e−λ
inf∑
x=0

esx
λx

x!

= e−λee
sλ = e−λ+e

sλ

= eλ(e
s−1)

To compute moments:

M ′X(s) = λeseλ(e
s−1)

M ′′X(s) = λeseλ(e
s−1) + λesλeseλ(e

s−1) = eλ(e
s−1)λes(1 + λes)

EX = M ′X(0) = λe0eλ(e
0−1) = λ ∗ 1 ∗ 1

EX = λ

EX2 = M ′′X(0) = eλ(e
0−1)λe0(1 + λe0) = 1× λ× 1(1 + λ) = λ(1 + λ)

V ar(X) = EX2 − (EX)2 = λ(1 + λ)− λ2 = λ+ λ2 − λ2 = λ

σX =
√
V ar(X)

So this affirms what we alluded when we defined the Poisson distribution, that the parameter
λ is just the mean of the random variable. Note also that the standard deviation scales as
the square root of the mean, similarly to binomial distribution
Negative binomial distribution(geometric distribution is a special case)

R(X) = 0, 1, 2...px =

(
x+ r − 1

x

)
prqx =

(
−r
x

)
pr(−q)x
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Mean and standard deviation doable with pain by direct sum. Let’s use mgfs.

MX(s) = EesX =

∞∑
x=0

esx
(
−r
x

)
pr(−q)x

=

∞∑
x=0

esx
(
−r
x

)
pr(−qes)x

= pr
∞∑
x=0

(
−r
x

)
(−qes)x1−r−x = pr(−qes + 1)−r

MX(s) = pr(−qes + 1)−r

M ′X(s) = pr(−r)(−qes + 1)−r−1(−qes)
M ′′x (s) = pr(−r)(−r − 1)(−qes)2(−qes + 1)−r−2 + pr(−r)(−qes + 1)−r−1(−qes)

= pr(−r)(−qes)(−qes + 1)−r−2[(−r − 1)(−qes) + (qes + 1)]

= pr(−r)(−qes)(−qes + 1)−r−2[qres + 1]

X = M ′X(0) = pr(−r)(−qe0 + 1)−r−1(−qe0) = pr(−r)(1− q)−r−1(−q) = pr(−r)(p)−r−1(−q)

EX =
qr

p

EX2 = M ′′X(0)

= pr(−r)(−qe0)(−qe0 + 1)−r−2[qre0 + 1]

= prrq(1− q)−r−2(qr + 1)

= prqrp−r−2(qr + 1) =

=
qr(qr + 1)

p2

V ar(X) = Ex2 − (Ex)2

=
qr(qr + 1)

p2
− (

qr

p
)2

=
(qr)2

p2
+
qr

p2
− (qr)2

p2

V ar(X) =
qr

p2

σx =

√
qr

p
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2 Lecture Note(10.23)

Application of discrete random variables and mgfs to a family planning model.

Let’s consider three strategies by which families may be formed

1. Strategy A: every family has exactly c children per couple

2. Strategy B: Every family keeps having children until they have 1 child with special
feature(CSF), then they stop.

3. Strategy c every family keeps having children until they have 2 CFSs, they they stop.

Assumpe each child is a CSF with probability p, independently of other children. Consider
how the distribution of CSFs in population depend on these family planning strategies.
1. What is the ratio of CSF to children in the population as a whole?(sampling children).
2. What is the average ratio of CSF to children within a typical family?(sampling families)

the mathematical setup for these questions are, respectively:

1. Ratio of CSFs to children in the population as a whole: let’s define Xi to be the number
of CSFs in the ith family in the population. Then the number of CSFs in population is∑n

i=1 if we have n families.
The total number of children is

∑n
i=1Ci is the number of children in family i

So the ratio of CSFs to children in the population:

n∑
i=1

Xi∑n
i=1Ci

=
1
n

∑n
i=1Xi

1
n

∑n
i=1Ci

=n→∞
EX
EC

By the frequentist interpretation of expectation, or by law of large Numbers

2. The answer to the second question is instead:

1

n

n∑
i=1

Xi

Ci
→n→∞ E

X

C

(This is not the same as the equation in the 1)

Strategy A: C= c is deterministic constant.

X bin(c, p)(binomially distributed with c trials and success probability p)

EC = c

EX = cp

E
(
X

C

)
=

1

c
EX =

cp

c
= p

EX
EC

=
cp

c
= p

8



Strategy B: X = 1

C = 1 +Nwhere N is the number of non-special children

The random variable N is a geometric distribution with success probability p The pmf
for N is pn = pqn for n = 0, 1, 2, · · ·
where q = 1− p

EX = E1 = 1

EC = E(1 +N) = 1 + EN = 1 +
q

p
=
p+ q

p
=

1

p

That we could also have gotten directly by using the geometric distribution for total number of trails until and including the first success

Therefore, the fraction of special children in the population is

EX
EC

=
1
1
p

= p

Now what is the average fraction of special children within a family?

E
(
X

C

)
= E

(
1

1 +N

)
=

∞∑
n=0

1

1 + n
pn

=

∞∑
n=0

1

1 + n
pqn

Try to make this look like a moment calculation so we can use mgf approach.

c = n+ 1(index of total number of children):

E(
X

C
) =

∞∑
c=1

1

c
pqc−1, pcc−1 is pmf of C

This is exactly EC−1 Let’s compute the mgf of C:

EesC = Es(N+1)

= EesN+s

= esNes

= esEesN

= esMN (s)

But N is geometric with success probability p, so we know its mgf from last time:
MN (s) = p(1− qes)−1

MC(s) =
pes

1− qes

What we want is EC−1. Let’s try integrating the MGF rather than differentialing it:
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∫ 0

−∞
MC(s)ds = E

∫ 0

−∞
esCds

= E
esC

C
|0s=−∞

= E
(
e0C

C
− 0

)
= E

1

C
So therefore

E
1

C
=

∫ 0

−∞

peS

1− qes
ds

=

∫ 1

0

pdu

1− qu
= −p

q
ln(|1− qu|)|10

= −p
q

(ln(|1− q|)− ln(1))

= −p
q

(ln(1− q))

ThereforeE(
X

C
) =

p

q
ln (

1

1− q
)

is the average fraction of a family’s children that are special.

Continuous variable

Examples of continuously distributed random variable:

• uncertain spatial locations (...)

• uncertain times(length of an illness, time at which a person infects another person,
lifetime of a piece of equipment or length of time between failures of equipment )

• measuring various physical variable (momenta, temperature,velocities)

• some situations where the natural units are discrete, a continuous model is

– dynamics of large populations

– financial markets.

Why use continuous models as approximations to discrete models? if you keep a discrete
model, then the model often has an extra parameter which is the discretization unit, and that
can actually complicate the analysis.
A key distinction between continuous and discrete random variable is that probability mass
function are useless for continuous random variables because generally speaking (not always,
but typically)

Pr(X = x) = 0

10



Therefore the probability mass function does not do any useful work for continuous random
variables
To extend the framework of random variable theory to account for general random variables
(that are not discrete) appeals to measure theory. We will not go into this, but rather focus
just on the special case of what’s known as (absolutely) continuous random variables. For
now we’ll focus just on continuous random variables which have a one-dimensional state space
which is real:S ⊆ R. Such random variables have the property that there exists a probability
density function(pdf)(which replaces the pmf) (use f(x) to represent pdf, fx represents pmf)

f(x)(∈ L1) one dimension

Which has the properties:

• f(x) ≥ 0

•
∫
S f(x)dx = 1

Such that for any nice ( Borel) subset B ⊆ S, we have

Pr(X ∈ B) =

∫
B
f(x)dx

In particular, if we consider B to be an interval between values a,b and it doesn’t matter if
we consider it an open or closed or half-open interval:

Pr(a < X < b) = Pr(a ≤ X ≤ b) = Pr(a < X ≤ b) == Pr(a ≤ X < b)

=

∫ b

a
f(x)dx

(figure 2.1)
Notice that when we talk about continuous random variables, we need to talk about probabil-
ities for the random variables to fall within some nice set, rather than some particular point,
because the probability of the latter is always zero. What’s the intuitive meaning of the pdf?
Note that while it plays an analogous role to the probability mass function of discrete random
variables, it’s not the same thing, and it doesn’t even have units of probability

11



It is not true f(x) = Pr(X = x) No it is not

Pr(a < X < b)dimensionless =

∫ b

a
f(x)dx[f][x]

So the dimensions of the PDF [f ] = 1
[x]

So if X has units of length, then f ahs units of 1/length

If X has units of time, the f has unites of
1

time
The probability density function plays an exactly analogous role to the mass density function
in associating a region to a probability/mass by integrating the density function over that
region.
So what does the pdf mean? consider the following set of equatlities which are valid where
f(x) is continuous(which is not necessary!):

f(x) = lim
ε→0

∫ x+ε
x−ε f(x′)dx′

2ε
(Mean Value Theorem)

= lim
ε→0

Pr(x− ε < X < x+ ε)

2ε

= lim
ε→0

Pr(|X − x| < ε)

2ε

That said note that probability density function don’t have to be bounded or continuous.

Now let’s look at some important continuous random variable models.
Uniform(continuous) distribution on an interval [a, b](a¡b)

X ∼ U(a, b)

12



We’ve alluded to this probability distribution before (when we did Bertrand experiment, etc.)

Want, for any (x1, x2) ⊆ [a, b], we want Pr(x1 ≤ X ≤ x2) = |x2−x1|
b−a =

∫ x2

x1
f(x)dx

What f(x) works? Well the idea of uniform distribution suggests f(x) should be some constant
between a and b. But the area under f(x) should be 1,
We could just define the pdf to be f(x) = 1

b−a on the state space S = [a, b]
Sometimes though, people like to take the state space of any real random variable as S = R
And then define pdf

f(x) =


0 x < a
1
b−a a ≤ x ≤ b
0 x > b

Sometimes continuous random variables are uniformly distributed.

13



3 Lecture Note(10.26)

Last time we introduced the concept of probability density function(pdf) that plays the role
for continuous random variable that probability mass function (pmf) did for discrete random
variables.

3.1 From Discrete Random Variables to Continuous Random Variables

How do we carry over the calculations for discrete random variables to continuous random
variables?

• Expectations?

• Expectations of g(X)

• Compute probability distribution of Y = g(X) from the probability distribution of
X(next time)

One defines the expectation of a continuous random variable X with pdf f(x) and state
space(range) S as:

µX = EX = 〈X〉 =

∫
S
xf(x)dx

(note the analogy to expectation of discrete random variables; use pdf rather than pmf and
integrate rather than sum.) This definition can be shown through measure theory to be
unified naturally with the definition of expectation for discrete random variables(as we’ll see
in the next lecture theory), or one can see that if the continuous random variable will have
approximately the expectation of the approximating discrete random variable (Riemann sum
argument.)

Then the LUS for continuous random variables:

Eg(X) =

∫
S
g(x)f(x)dx

Linearity of expectation formula applies to all random variables, not just discrete random
variables. So do the scaling formulas for expectations and standard deviation.
Let’s practice these formulas with the continuous uniform distribution we introduced last time.

Let’s start by studying the mean and standard deviation of U ∼ U(0, 1) a uniformly distri-
bution random number on [0,1]

fU (x) = (subscript to describe the random variable)

{
1 for 0 ≤ x ≤ 1

0 else

EU =

∫
S
xfU (x)gx =

∫ 1

0
x1ds(+0) =

∫ 1

0
xdx =

1

2
x2
∣∣∣1
0

=
1

2
(1− 0) =

1

2

second moment?

EU2 =

∫
S
x2fU (x)gx =

∫ 1

0
x21ds(+0) =

∫ 1

0
x3dx =

1

3
(1− 0) =

1

3

14



V arU = EU2 − (EU)2 =
1

3
− (

1

2
)2 =

1

12

σU =
√
V ar U =

1√
12

What about calculating these statistics for X ∼ a+ (b− a)U .
Could redo the calculation. Or let’s exploit the relationship:

X ∼ a+ (b− a)U.

This statement with the ∼ means both sides have the same probability distribution, but might
not be exactly equal. If X1 and X2 are the Bernoulli random variable describing the outcome
of trials 1 and 2 in a sequence od Bernoulli trials, then X1 6= X2

But X1 ∼ X2 (they have same probability distribution but not same random variable )
How do we prove that X ∼ a+ (b−a)U? We will develop a machine for doing this next time,
but let’s do a basic version today to demonstrate the idea.

We want to show that for any x1 < x2 that P (x1 < X < x2) = P (x1 < a+ (b− a)U < x2)
We can check that if x1 < x2 < a or b < x1 < x2 then both probabilities are 0. How?
Manipulate the right hand side by isolating U .

P (x1 < a+(b−a)U < x2)
−a−−→ P (x1−a < (b−a)U < x2−a)

/(b−a)−−−−→ P (
x1 − a
b− a

< U <
x2 − a
b− a

)

What about a < x1 < x2 < b? Then

P (x1 < X < x2) =

∫ x2

x1

fx(x)dx

=

∫ x2

x1

1

b− a
dx

=
x2 − x1
b− a

P (x1 < a+ (b− a)U < x2) = P (
x1 − a
b− a

< U <
x2 − a
b− a

)

=
x2 − a
b− a

− x1 − a
b− a

=
x2 − x1
b− a

Because 0 ≤ x2−a
b−a ≤

x1−a
b−a ≤ 1

We see both probabilities are the same. And then one can check the cases where the
interval[x1, x2] only partially overlaps the interval [a, b], again the Probabilities agree. We
have sketched how to show that X, a + (b − a)U have the same probabilities to fall in any
interval we specify. Intuitively, and next time rigorously, this is enough to show that they
have the same probability distribution:X ∼ a+ (b− a)U
So what? Note that this means that X has the same probability distribution as linear function
a+ (b− a)U of the random variable U
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SO

EX = (a+ (b− a)U)

= a+
(b− a)

2

= a+ (b− a)
1

2

= a+ b
1

2
− a1

2

=
a+ b

2
σx = σa+(b−a)U

= (b− a)σU

= (b− a)
1√
12

=
b− a√

12

3.2 Poisson Point Process

We’ll begin building the bridge between Bernoulli trials and continuous time randomness by
considering a continuum limit of Bernoulli trials

Bernoulli process in the n→∞

The number of success in [t1, t2] is a random variable, let’s call it N , it’s a discrete random
variable. The only tricky thing is how to handle success that fall in the small intervals that
contain the endpoint t1, t2 but since the probability for that happen will go to zero as n→∞
we will neglect that. Then the number of successes that fall within one of the Bernoulli trials
contained in the interval [t1, t2] can be viewed as the number of successes in t2−t1

1

n

± 2 trials

with success probability pn = 1
nτ We’d get a binomial distribution with n(t2 − t1) ± 2 trials

16



and success probability pn = 1
nτ As n → ∞ this converges to a Poisson distribution with

mean

λ = lim
n→∞

(n(t2 − t1)± 2)
1

nτ

= lim
n→∞

(
(t2 − t1)

τ
± 2

nτ
)

=
t2 − t1
τ

In a Poisson point process with parameter τ (which is the continuum limit of a Bernoulli
process), The number if success in an interval [t1, t2] is Poisson distributed with mean λ = t2−t1

τ

Now look at the Gamma experiment for another view. How long do we have to wait until
the first success, as n→∞
We know the answer for the number of trials until the first success is given by a geometric
distribution, and we want to take the n→∞, but this is going to give a continuous probability
distribution. How do we take limits of discrete random variables to get continuous random
variables?
Need a framework that unifies both continuous and discrete random variables, and as we’ll see
next time, the cumulative distribution function (CDF) is the basic tool for unifying essentially
all practical random variables.
Today we will just show the idea; make it systematic next time.
Let X1 denote the index of the first trial at which a success occurs. And let T1 = X1

n define

the time at which the success occurs(since each trial takes a time 1
n).

Pr(T1 > t) the probability that the first success takes at least until some time t > 0

Pr(T1 > t) = Pr(
X1

n
> t) = Pr(X1 > nt) = Pr(X1 > bntc)

= (1− pn)bntc

byc is the greatest integer not exceeding y
Because requiring more than bntc trials to get the first success means the first bntc trials were
all failures.

lim
n→∞

=

(
1− 1

nτ

)bntc
= lim

n→∞

[(
1− 1

nτ

)−nτ ]−bntcnτ

= e−
t

τ

(compound interest rate formula)
That

lim
h→0

(1 + h)
1

h = e

so that implies, by taking h = − 1
nτ that limn→∞(1− 1

nτ )−nτ = e

17



lim
n→∞

−bntc
nτ

= lim
n→∞

−nt
nτ

+
nt− bntc

nτ

= lim
n→∞

− t
τ

+O(
1

n
)

= − t
τ

Pr(T1 > t) = e−
t

τ

But by the definiton of pdf:

Pr(T1 > t) =

∫ ∞
t

fT1
(t′)dt′ = e−

t

τ for t > 0

Differentiate both sides:
d

dt

∫ ∞
t

fT1
(t′)dt′ =

d

dt
e−

t

τ

FTC:

−fT1
(t) = −1

τ
e−

t

τ for t > 0

Obviously the PDF is zero by definition of T1 for t < 0

So now we have that the time to wait until the first success in a poisson point process is given
by an exponential distribution with parameter τ
PDF:

fT1(t) =

{
1
τ e
− t

τ for t ≥ 0

0 for t < 0

This is the continuous analog(for Poisson point processes) to the geometric distribution that
describes the number of failures until the first success. The continuous analog to negative
binomial distribution to wait for r success in Bernoulli trials is the Gamma distribution for
Poisson point process.
Let’s compute the basic statistics of the exponential distribution. For practice, let’s use mgfs.

MT1
(s) = EEsT1

=

∫ ∞
0

estfT1(t)dt

=

∫ ∞
0

esT
1

τ
e−

t

τ dt

=
1

τ

∫ ∞
0

et(s−
1

τ
)dt

=
1

τ

1

s− 1
τ

et(s−
1

τ
)
∣∣∣∞
t=0

=
1

τ

1

s− 1
τ

(0− 1) providrd that s <
1

τ

MT1
(s) = − 1

τ
(
s− 1

τ

)
=

1

1− sτ
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So now:

ET1 =
d

ds
MT1

(s)
∣∣∣
s=0

= −(−τ)
1

(1− sτ)2
|s=0

= τ

ET 2
1 =

d2

ds2
MT1

(s)
∣∣∣
s=0

= 2τ2

V ar(T1) = ET 2
1 − (ET1)2

= 2τ2 − τ2 = τ

σT1
= τ

This is the continuous random variable analog to the geometric distribution for discrete ran-
dom variables. One can show that the gamma distribution
It doesn’t make sense any more, after the continuum limit, to list failures and successes. In-
stead simply label the sequence of times at which an incident or a success happens. We could
have done this for the Bernoulli process.

The times Yj at which the incidents occur are separated by interincident times Tj so Yn =∑
j=1

Tj Yhe random variables Tj are easier to work with.

Poisson process is useful for modeling various continuous time events where something special
occurs at discrete moments of time:

• arrival of demand or request

• entry of vehicles into a roadway

• arrival of pedestrians at a crosswalk

• moments at which a one-step biochemical reaction occurs

• simple models for when a neuron receives a signal from a neighboring neuron

• price shocks in markets

This is the continuous random variable
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4 Lecture Note(10.30)

4.1 Normal (Gaussian) Distribution

One writes as shorthand: X ∼ N(µ, σ2) to refer to a normal (Gaussian) PDF of the form:

f(x) =
e−

1

2
( x−µ
σ

)2

√
2πσ

(figure 10.30.1)
Let’s compute its mean and variance using a similar strategy to what we did for the uniform
distribution.
Standard Gaussian normal random variable: Z ∼ N(0, 1) (centered at 0, width 1) Once can
show, by the method we will develop below, that x ∼ N(µ, σ2) can be expressed X ∼ σZ +µ

By doing some standard Gaussian integrals, one finds that for the standard Gaussian random
variable:

EZ = 0

σz = 1

We can then use there results to conclude:
If X ∼ N(µ, σ2) then

EX = E(σZ + µ) = σEZ + µ = σ · 0 + µ = µ

σx = σσZ+µ

Gaussian distributions are good models for many variables, particularly those which result
from a large number of independent factors, by virtue of the Central Limit Theorem, which
we’ll talk about later. For now, observe that Gaussian/normal distribution is a good approx-
imation to :

• binomial distribution when the number of trial is large, and the success probability
is not necessarily small (match mean and variance), the mean must be large for the
approximation to be good ( n and np greater enough)

• Poisson distribution when its mean is large(match mean and variance) (λis greater
enough)

This doesn’t simplify the number of parameters, but complex computations with Gaussian
are in general considerably easier than with binomials or Poisson. The general idea is that
multiple Gaussian random variables can be analyzed via linear algebra.

4.2 Cumulative Distribution Function

Some books call it simply the ”distribution function” but this is not common language in my
experience and potentially confusing.
The CDF for a random variable X (does not matter if it’s discrete, continuous, or neither)

FX(x) = Pr(X ≤ x)

It is a unified way to represent random variables with complete information. Let’s see how
it’s related to the previous ways of describing discrete and continuous random variables
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For discrete random variables X

FX(x) =
∑

y≤x,y∈R(x)

py where px is the pmf of X.

The pmf for a discrete random variable can be obtained from the CDF by looking at the
location and size of jumps.
For continuous random variable X image here

FX(x) = Pr(X ∈ (−∞, x])

=

∫ x

−∞
fX(y)dy where fX(x) is the pdf of X

Conversely, we can get the PDF from the CDF by differentiation:

fx(x) =
d

dx
Fx(x)

Let’s illustrate for exponential distribution

PDF: f(x) =

{
1
τ e
− x
τ for x ≤ 0

0 for x < 0

CDF:F (x) =

∫ x

−∞
f(y)dy = 0 if x ≥ 0

=

∫ 0

−∞
0dy +

∫ x

0

1

τ
e
−y
τ dy

= 0− e
−y
τ |xy=0

= −(e
−x
τ − 1)

= 1− e
−x
τ

Note that discontinuities in PDFs can be handles fairly arbitrarily (whether you set the value
=0 to left or right hand limit does not mater)but the discontinuities in CDFs have meaning,
and as we will see later ....
We see that CDF

4.2.1 Advantages of CDF

The CDF is an advantageous description in the following sense:

• It’s a general purpose description, works for any random variable whether it’s discrete,
continuous, or neither(hybrid)

• it gives a general purpose way of going from the description of one random variable to
the description of a function of that random variable (“derived distribution”). If you
have Y = g(X) then it is relatively easy to go from the CDF of X to the CDF of Y But
going from the PDF of X to the PDF of Y is more complicates (but doable).

• It plays a central role in a general purpose algorithm for simulating random variables.

• In statistics, CDFs are used as a tool for comparing how close two probability distri-
butions are, i.e., the distance between the distribution of some data and a theoretical
model.(Kolmogorow-Smirnov test)
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4.2.2 Disadvantages of CDF

But the CDF has the following disadvantages:

• more awkward to work with than the PMF or the PDF when these are well-defined eg:
for computing statistics.

• through its definition can be extended to multiple dimensions(for several simultaneous
random variables), it’s very awkward in more than one dimension.

4.3 Properties and Uses of the CDF.

We now proceed to develop the properties and uses of the CDF.
For any kind of random variable(discrete, continuous, hybride, crazy) a CDF

• limx→−∞FX(x) = 0

• limx→∞FX(x) = 1

• FX(x) is a non decreasing function of x

• Fx(x) is right-continuous funciton F (x) = limy→x + FX(y)

4.3.1 Use CDF to derive probability distributions

CDF method for deriving probability distributions for functions of random variables (derived
distributions)
Suppose we have a random variable X with known probability distribution (either PMF, PDF
or CDF) and we want to compute the distribution Y = g(X)

Remark: If all we want is EY = Eg(y), think first about using LUS.

But continuing with the premise that we really want/need the probability distribution for Y
to do some calculation, like P (Y ∈ B)
Recall that after discussion of LUS for discrete random variables, we described a procedure
for doing this ”change of variables ” for discrete random variables. That procedure doesn’t
make sense for continuous random variables, so we will formulate a procedure that works for
all random variables (discrete, continuous, neither)
(CDF conversion)

Let’s first use this idea to show that if Z ∼ N(0, 1) and X ∼ N(µ, σ2)
Then X ∼ σZ + µ. To prove this it is sufficient to show that the CDF of g(Z) = σZ + µ is
the same as the CDF for X.

Call V ≡ g(Z) = σZ + µ

22



Fv(v) = Pr(V ≤ v) = Pr(g(Z) ≤ v = Pr(σZ + µ ≤ v)

To proceed, ”solve the inequality” inside the probability for the random variable whose prob-
ability distribution you know (Z):

FV (v) = Pr(σZ + µ ≤ v) = Pr(σZ ≤ v − µ)

= Pr(Z ≤ v − µ
σ

)

= FZ(
v − µ
σ

)

FZ is ”known” Note though that the CDF for a Gaussian random variable is a special n
:function

FZ(z) =

∫ z

−∞
fz(z

′)dz′

=

∫ z

−∞

1√
2π
e−

z′2
2 dz′ ≡ Φ(z) this can show in the answer

which has to be evaluated numerically; it is not expressible in terms of the standard functions
from pre-calculus. Φ(z) is the CDF for the standard normal random variable; it is closely
related to the error function erf, and you can use erf instead of Φ if you want iamge4

FV (v) = φ(
v − µ
σ

)(Z − score)

But can we show that this is Fx(x)?

FX(x) =

∫ x

−∞
fx(x′)dx′ =

∫ x

−∞

1√
2πσ

exp(−(x′ − µ)2

2σ2
)dx′

Let’s change variables to make this integral looks like in the integral of a standard normal.
z′ = x′−µ

σ and dx′ = 1
σdx

′. So x′ = µ+ σz′ and dx′ = σdz′

Fx(x) =

∫ x−µ
σ

−∞

1√
2π
exp(−z

′2

2
)dx′ = φ(

x− µ
σ

)

So we showed:FX(x) = φ(x−µσ )

FV v = Φ(
v − µ
σ

)

Same CDF (different dummy argument) so V ∼ X
So

σZ + µ ∼ X as claimed

Let’s illustrate this procedure by a simple modeling question. Suppose some piece of equip-
ment is used in many places in some industrial operation; its working lifetime is a random
variable T which we ’ll model as exponentially distributed with mean τ .
The industry employs a block-replacement policy for this piece of equipment, meaning that
the equipment is replaced when it breaks or after it has been operating for a time τr, whichever
comes first
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Then what are the statistics(probability distribution, mean variance) for the amount of time
this piece of equipment is actually in operation? Call this random variable X
X = min(T, τr) So can think X = g(T ) = min(T, τr)
If all you want is EX, or σx then you can use LUS:

EX = Emin(T, τr) =

∫ ∞
−∞

min(t, τr)
1

τ
exp−

t

τ dt = ...

where

pT (t) =

{
1
τ e
− t

τ for t ≥ 0

0 for t < 0

Similarly to get EX2 set up a similar calculation using LUS, and get σx from item the usual
way.

But suppose instead we want to ask questions like P (X ≥ 3) then may need to work with
CDF approach.
Let’s try to get the CDF for X:

FX(x) = Pr(X ≤ x) = Pr(min(T, τr) ≤ x)

Solve the expression inside the probability for T. Can do it algebraically or sometimes graphics
plot help.
Sometimes when the function g is peicewise defined, it helps to break the calculation into sub
cases.
First suppose x > τr. Associate a set Bx = {t : g(t) ≤ x} Then Bx = R
For x > τr,

Fx(x) = Pr(X ≤ X) = Pr(min(T, τr) ≤ x) = Pr(T ∈ Bx) = Pr(T ∈ R) = 1

but if x ≤ τr Associate a set Bx = t : g(t) ≤ x. Then Bx = (−∞, x).

FX(x) = Pr(X ≤ x) = Pr(min(T, τr) ≤ x)

= Pr(T ∈ Bx)

= Pr(T ∈ (−∞, x))

= FT (x) = 1− e−x/τrforx > 0

= 0forx ≤ 0

That tells me that CDF for the working lifetime X:

FX(x) =


0 for x ≤ 0

1− e
−x
τr for 0 < x < τr

1 for x ≥ τr

image5
Once I have the CDF for X, then I can compute anything I want about X, like its PMF,
PDF, This CDF describes neither discrete nor continuous– it ’s hybrid.
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5 Lecture Note(11.2)

5.1 Hybrid Random Variable(Generalized PDF)

From last class working lifetime Ex.

Fx =


0 x ≤ 0

1− e−
x

τ 0 < x < τ

1 x ≥ τr

This CDF is piece wise cont, with a finite number if jumps, This is a case of a ”hybrid ” Rand
Var, since it has feature of both cont, and disr, RUs.

• -X has finite probability at jump discontinuities

• But elsewhere CDF is continuously non decreasing. Here X is continuously distributed

To compute quantities related to X, we explicitly write out a “generalized PDF”. This takes
the form

fx(x) = fx,c(x) +
∑

x∈A(x)

ajδ(x− xj)

Where the continuous part is

fx,c =
dFx
dx

wherever the derivative exists.

Don’t worry about discontinuities

A(x) = {x1, x2, · · · , xk}
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is the set of “atom”, which the locations of jump. discontinuities
aj is the magnitude of the jump of discontinuities.

lim
x→x+

j

Fx(x)− lim
x→x−j

Fx(x) = Fx(xj)− lim
x→x−j

F (x) = Pr(X = xj)

δ is ”Dirac delta function which is simply a placeholder for locations of discontinuities”
For example

fx,c =


0 x ≤ 0
1
τ e
− x
τ 0 < x < τr, a(x) = {τr}

0 x ≥ τr, a1 = e−
τr
τ

Given a general pdf, we can compute expectation by a generalization of LUS.

E[h(x)] =

∫
h(x)fx,cdx+

∑
xj∈A(x)

ajh(xj)

For our example:

E[x] =

∫ τr

0
x · ( 1

τ
e−

x

τ )dx+ e−
τr
τ
τr

Some facts about computing problem with CDF

1. Since

1 = Pr(−∞ < X <∞) = Pr({X > c} ∪ {X ≤ c})
= Pr(X > c) + Pr(X ≤ c)
= Pr(X > c) + F (c)

Pr(X > c) = 1− F (c)(cdf)

2. For b ≥ a

Pr(x ≤ b) = Pr(X ≤ a) ∪ {X ∈ (a, b]}
= Pr(X ≤ a) + Pr(X ∈ (a, b])

Pr(x ∈ (a, b]) = F (b)− F (a)

Note: We cannot be sloppy about endpoint when working of CDF.(in discrete and
hybrid). (Except continuous)

5.2 Quantile Function

We like a generalization of an inverse that can be applied to non-decreasing function, possibly
with jumps, we’ll denote this as F−1, This is called the quantile function . formally.

F−1(q) = min{y : q ≤ F (y) Traditionally we define domain of (0,1)}

Ex: Discrete Dist:
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R(X) = {1, 2, 3}, P1 = 1
2 , P2 = 1

3 , P3 = 1
6

For continuous random variables, if CDF is 1:1 (strictly increasing), then F−1 is the traditional
inverse of F
Ex: (Uniform dist) The pdf of unit dist of [a, b] is

f(x) =

{ 1
b−a on x ∈ [a, b]

0 otherwise
−→ F (x) =


0 if x ≤ a∫ x
0

1
b−a = x−a

b−a if x ∈ [a, b]

1 if x ≥ b

Then F(x) is strictly increasing over possible values of the Random variable To find F−1(x),
solve x = y−a

b−a for y → y = x(b− a) + a

So F−1(q) = q(b− a) + a
Ex:

FX =

{
1− e−

x

λ x ≥ 0

0 x < 0

To compute quantile, find inverse

q = 1− e−
x

λ → 1− q = e−
x

λ → log(1− q) = −x
λ
→= F−1(q)q ∈ (0, 1)
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5.3 Inverse Transform Method(Quantiles)

Quantiles allow for us to simulate an arbitrary R.V X, provided that we have a uniform
random generator [0,1] This is a widely used function in many programming language
Suppose U ∼ Unif(0, 1) If I want to simulate random variable x, I first compute quatile F−1x

and compose with U, giving F−1X (U)
We will show

X ∼ F−1x (U)

For instance, to sample from exponential random variable with mean λ, we sample X ∼
−λ log(1− U), this is called inverse transform method(hw 1 d)
In discrete case , this is equivalent to the following
Divide [0,1] into bins of size PX , the probs of the pmf.
The bin that U falls into is the value of X simulated

Why does this work? Sppose we have RVs X and

Z = F−1X (U), U ∼ Unif(0, 1)

We show that X and Z have the same CDF, so FX(x) = FZ(x)

FZ(X) = Pr(Z ≤ x) = Pr(F−1x ≤ x)

= Pr(U ≤ Fx(x))

= Fx(x)Thus: Fz(x) = Fx(x)

5.4 Back to Poisson Point Process

Nice fact about exponential distribution
We suppose random variable T that is exponential distribution, then it satisfies the ”memo-
riless property”

Pr(T > u|T > s) = Pr(T > u− s) for 0 < s < u

This is stating that if I waiting for an event that is exponential distributed, having waited for
time x does not affect the future probabilities.
To see this, note
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Pr(T > u|T > s) =
Pr({T > u} ∩ {T > s})

Pr(T > s)

=
Pr(T > u)

Pr(T > s)

=
1− Pr(T ≤ u)

1− Pr(T ≤ s)

=
1− FT (u)

1− FT (s)

=
1− (1− e−

u

τ )

1− (1− e−
s

τ )

=
e−

u

τ

e−
s

τ

= e−
u−s
τ

= 1− FT (u− s)
= Pr(T > u− s)

Memory less: Geometric The exponential is the only continuous random variable for this
property
For Possion process, since the intervals between jumps here exp. dist, then intervals have
memory less prop.
Some example of when PPP how better used:

• Time to arrived in a queue

• chemical reaction

• Price shock and stock market (simplified model)
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6 Lecture Note(11.6)

6.1 Concept for part2 of this course

• Discrete random

–

• continuous random variable

– how to formulate in terms of probability density function , and how to compute
probabilities of events involving continuous random variables in terms of the PDF

– when the following continuous random variable models are appropriate:

∗ Continuous uniform

∗ Exponential

· Connection to PPP, it is continuous analogue of the geometric distribution

· Memoryless property

∗ Normal(Gaussian)

– Compute properties of random variables, particularly means and variances, standard
deviations

∗ scaling properties of means and variances under linear

• Moment generating functions

–

• Cumulative distribution function (CDF)

– Definition and the following 3 uses

∗

• PPP:

– When it is an appropriate model, how the random variables from the class so far
are associated to it

– possion distribution is memoriless, we will wait until next incident happen.

We will begin the last unit of the class which
A common quantity related to multiple random variables is their sum. Give ...

EY =

n∑
j=1

EXj

The derivation of this formula just uses the fact that expectation is a linear operation, and
the linear operations of summing and averaging commute(interchange sums or interchange
sum and integral). The direct use of this formula is straightforward, but using the formula in
reverse is a nice trick for many calculations of expectation of a random variable.
That is, we will focus on how to use this formula to compute the mean of a random ....
That is, one way to compute the mean of the complicated random variable Y
Example: Binomial Distribution We are given a binomially distributed random variable X
with n trials and success probability p. We’ve computed its mean through the moment
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generating function, but we’ll now show another way to derive the mean of X by expressing
X as a sum of simpler random variables.

X =

n∑
j=1

Xj where Xj is a Bernoulli random variable with success probability p

Xj indicates by a value of 1 a success on trial j and by a value 0 a failure on trial j. For this
reason, Bernoulli random variables such as Xj are often called indicator random variables.

EX = E
n∑
j=1

Xj =

n∑
j=1

EXj

For a Bernoulli random variable with success probability p,Xj = p

EX =

n∑
j=1

p = np

6.2 Example: Hypergeomotric distribution

Suppose we are given a random variable X which has a hyper-geometric distribution based on
dichotomous sampling without replacement of k selections from a population of size n, with
one sub-population having n1 members.

Ordered selections without replacement of size k = 3

Let’s use the same strategy to express the number from the first sub-population as sum of
Bernoulli/indicator random variables indicating what happened at each trial.

Xj will indicate whether trial j drew an item from the first sub-population

X =

k∑
j=1

Xj

(***Note the Xj affect each other but that doesn’t matter for computing expectations.)

X = E
k∑
j=1

Xj =

k∑
j=1

EXj =

k∑
j=1

Pr(Xj = 1)
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What is Pr(Xj = 1)? It’s always Pr(Xj = 1) =
n1
n

for all j. How show this?

• One could prove this by seeing it is true for j = 1, and the using law of total probability
and induction to show it for j > 1

• Symmetry argument: Every trial in and of itself is selecting one out of the n items in
the population with equal probability.

• Use classical probability with a sample space S of an ordered selection of k items without
replacement from a population of size n. Let the event A be ”The jth item drawn is
from the first sub-population”

Pr(A) =
|A|
|S|

=
n1 × (n− 1)k−1

(n)k

=
n1(n− 1)(n− 2)...(n− (k − 1))

n(n− 1)(n− 2)...(n− (k − 1))

=
n1
n

So:

EX =

k∑
j=1

Pr(Xj = 1) =

k∑
j=1

n1
n

=
kn1
n

6.3 Example: Negative Binomial distribution

The negative binomial random variable X describe how many failures in a Bernoulli process
with success probability p(and failure probability q=1-p) until the rth success. We can write
X =

∑r
j=1XjwhereXj is the number of failures between the j-1st success and the jth success.

(X1 is the number of failures until the first success).

EX = E
r∑
j=1

Xj =

r∑
j=1

EXj

The random variable Xj are geometric with success probability p.
From mgf or whatever, we calculate EXj = p

q , so

EX =

e∑
j=1

q

p
=
rq

p

We will get
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6.4 Coupon collector experiment

Suppose we sample with replacement, repeatedly, from a population m elements, until we
have selected k distinct objects from the population.

• See Coupon Collector Experiment app on ”Random”

Let X be the random variable representing the number of trials requried to achieve this goal.
This is similar, but not the same as, a negative binomial random variable, i.e., the number of
failures before we obtain r successes in Bernoulli trials.
But the negative binomial distribution doesn’t quite apply to the coupon collector problem
because collecting is not the same as ”success in a Bernoulli trial” Nonetheless, we can use
the idea of decomposing the number of trials X required to collect k distinct coupon as:

X =

k∑
j=1

Xj

where Xj is the number of draws required after j-1 distinct coupons have been collected until
k distinct coupons have been collected, i.e. until a novel coupon is selected.

Xj = 1 + Zj

where Zj is the number of “repeat” coupons drawn after j − 1 distinct coupons have been
collected until j distinct coupons have been collected.
Then Zj would be a geometric distribution with success probability

pj =
m− (j − 1)

m

Therefore EZj = qj
pj

= 1−pj
pj

= 1
pj
− 1 = m

m−(j−1) − 1

So:EX = E(
∑k

j=1Xj) =
∑k

j=1 EXj =
∑k

j=1 1+EZj =
∑k

j=1 1+ m
m−(j−1)−1 =

∑k
j=1

m
m−(j−1)

If k is large(which also requires m to be large),then this sum looks like the Riemann sum of
the integral.

≈
∫ k

1

m

m− (j − 1)
dx = m ln(m− (x− 1))|kx=1

= m(ln(m− (k − 1))− ln(m− (1− 1)))

= −m(ln(m− k + 1)− lnm)

= m ln

(
m

m− k + 1

)
Comments: Coupon collector model can be useful way to think about analyzing some kinds of
random sampling or computation algorithms. Break into the expected running time between
checkpoints

6.5 Spore Model

Suppose a plant produces a chain of n spores, which then blows in the wind, and then spore
chain will break ai any link between spores with probability p, independently of how the other
links break
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What is the expected number of chain fragments containing exactly l spores, where l can be
sny number 1, · · ·n? Call this random variable X(l). It’s the same as a fragment containing
exactly l − 1 consecutive unbroken links.
How can I break X(l) into a sum of random variables whose expectation is easy to calculate.

Write X(l) =
∑k

j=1X
(l)
j where X

(l)
j is a Bernoulli indicator random variable for the event that

nodes j, j + 1, · · · j + l − 1 from a fragment.

Pr
(
X

(l)
j = 1

)
= (1− p)l−1(internal links unbroken)× p2( links of ends of fragment broken)

using the independence of the fragments events to multiple probs.
For 2 ≤ j ≤ n− l + 2 (internal fragments)

Pr
(
X

(l)
j = 1

)
= (1− p)l−1 × p2

For j = 1, n− l + 1(end fragments, only one external link to break)

Pr(X
(n)
j = 1) = (1− p)(l−1)the probability the whole chain remains a single fragment

For Bernoulli/indicator random variables, EX(l)
j = 1

EX(l) = E
∑k

j=1X
(l)
j =

∑k
j=1 EX

(l)
j =

∑k
j=1 EPr(X

(l)
j = 1)

For l < n, two terms will be the endcases (j=1, j=n-l+1) and n− l − 1 will be interior cases.
So using the above results:

EX(l) = 2(1− p)(l−1) × p+ (n− l − 1)(1− p)(l−1) × p2

For the case
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7 Lecture Note(11.9) Independent Random variables

7.1 Note on homework 4

1. Problem 2c: damage D = g(R)(damage as a function of rainfall)

D = c(max(0, R− 1100))
2

3 = g(R)

R ∼ N(800, 1002)

fD(d) 6= fR(g−1(d))

2. Poisson process(Problem 2e)
a.As we’ve defined in class, it is a continuum limit of Bernoulli process, which means
that over different small time intervals, the probability for the incident to happen is the
same small value and the occurrence of these incidents over different time intervals of
the same size is independent.

Figure
There is a more general Poisson process that, to be more precise, is called an in-
homogeneous Poisson process that only requires independence but allows the rate of
occurrence to depend on time. But the time between incidents is then no longer expo-
nentially distributed.

3. Poisson process is more generalized then Poisson distribution

7.2 Independent Random Variable

When working with the collection of random variables simultaneously, one generalyy needs to
say something about how these random bariables are related to each other to do calculations, if
we want anything other than the mean of the sum. The general way of expressing relationships
between random variables is through joint probability distributions but we do not need to
full technical framework when the random bariables are taken to be independent of each other.

A collection of random variables {X1, X2...xn} is said to be independent iff for any nice (Borel)
subsets Bj ⊆ Sj where Sj is the state space for Xj , we have:

Pr(X1 ∈ B1, X2 ∈ B2, ....) = Pr(X1 ∈ B1)× Pr(X2 ∈ B2)× ...× Pr(Xn ∈ Bn)

In other words, the random variablesX1, X2, ..., Xn are independent precisely when the events
X1 ∈ B1, X2 ∈ B2, · · · , Xn ∈ Bn are always independent.

A key result for independent random variables is that when we compute expectations involving
multiple independent random variables, we have:
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E(X1X2...Xn) = EX1EX2....EXn

More generally, if we take functions Yj = gj(Xj) where the gj are deterministic, then the
resuting random variables Y1, Y2, ..., Yn can also be shown to be independent of each other.

Putting these two facts together:

E(g1(X1)g2(X2)× ...× gn(Xn)) = Eg1(X1)× Eg2(X2)× ...× Egn(Xn)

For deterministic functions g1, g2, ..., gn
The results in red are only valid for independent random variables X1, ..., Xn

Examples of collections of independent random variables:

• The amount of flood damage in year 1 and the amount of damage in year 2 if the rainfall
in the two years is independent.

• The number of incidents in a Poisson process over non-overlapping intervals (# car
incidents this week, # car accident next Friday between 4-5 PM)

• Sampling from a population with replacement

• The outcomes of different Bernoulli trials

• The times between successive incidents in a Poisson process

Not independent random variables:

• The amount of rainfall in a given year and the amount of flood damage in a given year

• # lizards born in a given year and the number of lizards caught in that year.

• The number of incidents in a Poisson process over overlapping intervals (# car accidents
this week, # car accidents this month)

• Sampling from a population without replacement means the items selected at different
draws are not independent(for example, particles binding to open slots)

– only one particle can detach on same slot.

– one slot can combine multiple particles

A very common operation on independent random variables is to add them up, possible with
some deterministic weights:

Y = b+

n∑
j=1

cjXj with Xj independent random variables, and deterministic constants.

Such sum arise naturally in statistics, as well as stochastic dynamics. We already know how
to compute the mean of Y :

EY = b+

n∑
j=1

cjEXj

true without any assumptions on the relationships of the Xj with each other
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V arY =

n∑
j=1

c2jV ar(Xj) provided that Xj are independent.

To see why this is true, let’s first do a subcalculation:
We already know from before that

(1) V ar(cjXj) = c2jV ar(Xj).

(2) V ar(b+ Z) = V ar(Z)

(3) The above result will follow once we establish that

V ar(X1+X2+...+Xn) = V ar(X1)+V ar(X2)+...+V ar(Xn) if X1, X2, ...Xn independent

Because then:

V ar(Y ) = V ar

b+

n∑
j=1

cjXj

 (2)−−→ V ar

 n∑
j=1

cjxj

 (3)−−→
n∑
j=1

V ar(cjxj)
(1)−−→

n∑
j=1

c2jV ar(xj)

Just need to proof 3 that:

V ar(X1 + ...+Xn) = V ar(X1) + V ar(X2) + ...+ V ar(Xn)

It will follow by induction if we prove it for n = 2

V ar(X1 +X2) = E((X1 +X2)− E(X1 +X2))
2

= E((X1 +X2)− (EX1 + EX2))
2 Linearity of expectation

= E((X1 − EX1) + (X2 − EX2))
2 regrouping

= E((X1 − EX1)
2 + 2(X1 − EX1)(X2 − EX2) + (X2 − EX2)

2)

= E(X1 − EX1)
2 + 2E[(X1 − EX1)(X2 − EX2)] + E(X2 − EX2)

2

= V ar(X1) + 2E[(X1 − EX1)(X2 − EX2)] + V ar(X2)

We can seem E[(X1−EX1)(X2−EX2)] ≈ Eg1(X1)g2(X2). So we can use the result that says
for deterministic g1, g2 and independent X1, X2

E[g1(X1)g2(X2)] = Eg1(X2)× Eg2(X2)

= V ar(X1) + 2E[(X1 − EX1)(X2 − EX2)] + V ar(X2)

E[(X1 − EX1) looks like E(X1 − a) = E1 − a
= V ar(X1) + 2(EX1 − EX1)(EX2 − EX2)] + V ar(X2)

7.3 Sums of independent, identically Distributed Random Variables

A collection of random variables X1, X2, ..., Xn is said to be identically distributed if they all
have the same probability distribution (same PDF or PMF or CDF).

• for example, the indicator variables for sampling from the list of subpopulation are
identically distributed both with and without replacement.
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• the number of trials needed to get one more coupon in the coupon collector problem are
not identically distributed (even though they are independent)

We say a collection of random variables {X1, X2, ...Xn} are said to be iid if they are indepen-
dent and identical distributed

• most common occurrence of iid random variables in practice is through repeated exper-
iments and/or simulations of the same process on different realizations.

• As ”white noise” source

Sum of iid random variables have important simple expressions:

Sn =

n∑
j=1

Xj with Xj iid with µ = EXj and σ2 = V ar(Xj)

ESn =

n∑
j=1

EXj =

n∑
j=1

µ

ESn = nµ

Similarly,

V arSn =

n∑
j=1

V arXj =

n∑
j=1

σ2

V ar(Sn) = nσ2 where σ2 = V arXj

Also σSn =
√
nσ

This has an important consequence for the sample of a collection of iid random variables

µ̂ =
Sn
n

=
1

n

n∑
j=1

Xj

This is of course how we try to estimate the mean of EX from iif samples {Xj}n, drawn
from the probability distribution for X, Notice the sample mean µ̂n is random! What are its
statistical properties?

Eµ̂ = E
(
Sn
n

)
=

1

n
ESn =

1

n
(nµ) = µ

This is, in statistics, the property of an unbiased estimator.

• randomly select samples from bins. we will get approx ratio of bin

What about the fluctuations of the sample mean?

σµ̂ =
1

n
σSn =

1

n
(nµ) = µ

Standard deviation of the sample mean is:

σµ̂ =
σ√
n
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This is what’s known as sampling error in Monte Carlo simulations, and results from taking
only a finite number of samples which incompletely samples the randomness. The sampling
error will decrease according to the inverse squire root of the amount of effort (# simulations
or # experiments or # observatons). This relationship between sampling error and effort is
fundamental and one of the biggest disadvantages of Monte Carlo simulations. Most deter-
ministic computational methods have much better payoff for accuraxcy w.r.t effort. However ,
deterministic method have a huge overhead cost to implement or even run at low “low effort”
and/or produce garbage with low effort.

1. Some people advocated using “quasi-Monte Carlo” methods to improve somewhat on
the 1√

n
improvement with effort
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8 Lecture note 11/16

Sums of iid random variable
Eµ̂

This is, instat
Standard deviation of the sample mean

σµ̂ =
σ√
n

This is what’s known as sampling error in Monte Carlo simulations, and results from taking
only a finite number of samples, which incompletely samples the randomness. The sampling
error will decrease according to the inverse square root of the amount of effort (# simulations
or # observations). This relationship between sampling error and effort is fundamental and
one of the biggest disadvantages of Monte Carlo simulations. Most deterministic computa-
tional methods have much better payoff for accuracy w.r.t. effort. However, deterministic
methods often have a huge overhead cost to implement or even run at ”low effort” and/ or
produce garbage with low effort.

• Some people advocated using “quasi=Monte Carlo” methods to improve somewhat on
the 1√

n
improvement with effort. figure

By the way, you can estimate the standard deviation of a probabilistic distribution from
random sample of size n through the following formula sample standard deviation:

σ̂ =

√∑n
j=1(Xj − µ̂)2

n− 1

n-1: minus the degree of freedom.
Look at the applet called “Sample Mean Experiment” The other component of the sampling
error is the factor σ which is just a measure of how fundamentally random a realization is.

• Variance reduction methods try to design the realizations to reduce σ

At more elementary level, we at least have that σµ̂ → 0 as n→∞ The property of no bias and
the sampling error converging to 0 with effort is what’s known as the sample mean estimator
being consistent.
By the way, how would you estimate the error of your sample mean?
The true standard deviation of the sample mean is σµ̂ = σ√

n
but I don’t know σ. So rather

let’s use the guess for σ from the sample standard deviation, and this gives us the standard
error of the mean (s.e.m) which is the estimated standard deviation of the sample mean:

s.e.m“ = ”σ̂µ̂ =
σ̂√
n

So a good practice in reporting the results for Monte Carlo simulations of some model or cal-
culation, if you did n simulations or experiments is to report your estimate for the computed
quantity as : µ̂ ± σ̂µ̂ Or if you are plotting the results, plot the sample mean as your best
guess anf make the error bars some multiple of σµ̂

Some multiple? Depends what field you are in. In applied
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lim
n→∞

µ̂ = µ

This is just an expression of the Law of Large Numbers and is the rigorous basis of frequentist
thinking regarding probability.

Moreover, sums of iid random variables will approach a normal (Gaussian) distribution as
n→∞; this is the Central Limit Theorem

lim
n→∞

Sn = nµ

σ
√
n
∼ N(0, 1) as n→∞

Often in random algorithms in computer science, one wants to make provable statements
about performance. And these often take the form that the answer is correct with some high
probability, or the answer has a sort of specific level of accuracy with some high probability.
The high probability is expressed in terms of parameters of the algorithm and. or the effort
used(i.e., the number of items sampled). How are these statements derived? One fundamental
tools is the Bernstein inequality. Bernstein inequality gives a bound for the probability that
a sum of iid random variables differs by some amount from its mean.

So far we’ve presented formulas for computing means and standard deviations of sums of
independent random variables. What about the probability distribution of Y =

∑n
j=1Xj

where Xj are independent? This question can not be answered quite so easily as the mean
and standard deviation for Y
Consider first the simplest case where Xj are discrete, and n = 2,
We are given the pmfs of X1, X2, maybe they’re different.

p(X
1)

x = Pr(X1 = x)

p(X
2)

x = Pr(X2 = x)

Clearly Y = X1 +X2 should also be discrete. What is its pmf?

p(Y )
y = Pr(Y = y) = Pr(X1 +X2 = y)
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We chould do this by a brute force summing up of all the elementarty events(X1 = x1, X2 =
x2) that belong to the event A = {X1 +X2 = y}
Or by law of total probability, partitioning on the values of X2:

Pr(X1 +X2 = y) =
∑

x2∈R(X2)

Pr(X1 +X2 = y|X2 = x2) Pr(X2 = x2)

=
∑

x2∈R(X2)

Pr(X1 + x2 = y|X2 = x2)p
(X2)
x2

=
∑

x2∈R(X2)

Pr(X1 = y − x2|X2 = x)p(X2)
x

But since X1mX2 are independent, the events X1 = y − x,X2 = x are independent

Pr(X1 +X2 = y) =
∑

x2∈R(X2)

Pr(X1 = y − x2)p(X2)
x

=
∑

x2∈R(X2)

p
(X1)
y−x p

(X2)
x It is a convolution of the probability mass functions of X1, X2

What if you add up n independent random variables. If you repeat the above argument recur-
sively, you would find that the sum of n independent random variables is the (n-1) That is, sum
over all values in n− 1 nested operations. But there is an efficient way to compute convolu-
tions: Fourier transform, Laplace transform convert convolutions to multiplication operations.

Moment generating functions behave like Laplace transforms for random variables. And be-
cause we saw that the probability distribution of sums of independent rvs involve convolution,
mgf will be a good way to treat independent random variable

A good alternative procedure for working with sums of independent random variables is to
use moment generating function. Moment generating functions(mgfs) are essentially Laplace
transforms of the probability distribution, and so the reason mgfs are useful for sums of
independent random variables is the same reason that Laplace/Fourier transforms simplify
convolutions.
Moment generating function:

MY (s)EesY

Let’s try to calculate it in terms of the known random variables X1, X2 :

MY (s) = EesY

= Ess(X1+X2)

= E[esX1esX2 ]

= EesX1EesX2

= Mx1
(s)MX2

()s
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9 Note 11.20 Happy thanksgiving

The mgf of a sum of independent randomvariables is therefore easily related
Illustration: Suppose X1 and X2 are two independent poisson random bariables, with means
λ1, λ2 what is probability distribution for Y = X1 +X2

Pr(Y = y) =
∑

x∈R(X2)

p
(X1)
y−x p

(X2)
x

pX1
x =

e−λλx1
x!

; pX2
x =

e−λλx2
x!

for x=0,1,2, · · ·

Pr(Y = y) =

∞∑
x=0

pX1

y−xp
(X2)
x

=

y∑
x=0

e−λλy−x1

(y − x)!

e−λ2λx2
x!

=
e−λ1−λ2

y!

y∑
x=0

y!

(y − x)!

1

x!
λy−x1 λx2

=
e−λ1−λ2

y!

y∑
x=0

(
y

x

)
λy−x1 λx2

=
e−λ1−λ2

y!
(λ1 + λ2)

y by binomial theorem, for y = 0, 1, 2, ...

So we see from the pmf of Y = X1 +X2 that Y is Poisson rv with mean λ1 + λ2.
Let’s re-derive this result using mgfs.
We derived the mgf of a Poisson random variable in a previous lecture:

MX1
(s) = eλ1(es−1),MX2

(s) = eλ2(es−1)

MY (s) = MX1
(s)MX2

(s) = eλ1(es−1)eλ2(es−1) = e(λ1+λ2)(es−1)

This is the same as the mgf for a Poisson rv with mean λ1+λ2.And mgfs uniquely characterize
the probability distribution. Therefore this shows that Y is a Poisson random variables with
mean λ1 + λ2
This direct calculation agree with the intuition we should have about Poisson random vari-
ables, particularly in connection with the Poisson process
(figure)
If we are adding together n independent random variables: Y =

∑n
j=1Xjthe induction:

MY (s) = Πn
j=1MXj (s)
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Applying this to some of our common probability distributions, we find the following rela-
tionships

• adding independent Poisson random variables gives a Poisson random variable

• adding independent Gaussian/normal random variables gives a Gaussian/normal random
variable

• adding independent binomial random variables together, if they have the same success
probability, again gives a binomial random variable

• Adding independent geometric and/ or negative binomial random variables with the
same success probabilities gives negative binomial random variable.

More generally computing the probability distribution for a sum of independent random vari-
ables via mgfs has cost scaling linearly with n, while the direct calculation with repeated
convolutions would have cost scaling as mn where m is a large value (the range of the proba-
bility distributions.)
Also the Central limit theorem is essential proved by using mgfs(usually characteristic func-
tions) and Taylor expansion about small s(k)m and what one shows is that multiplying the
mgfs of n iid random variables together produces and mgf that converges to the mgs of a
Gaussian as n → ∞. The technical requirements have to do with how the mgfs behave near
s = 0(k = 0), which requires that the random variables have probability distribution

These statements are all consistent because Poisson distribution, binomial distribution, and
negative binomial distribution with large means can all be shown to be approximately Gaus-
sian.

• check this visually with Special Distribution Simulator app

9.1 Dependent Multiple Random Variables

If random bariables are not independent, then we must develop a technical framework for
describing their relationship. Just as for individual random variables, we will first develop a
comprehensive description, and then simpler incomplete but useful descriptions of the rela-
tionship.
The comprehensive description a collection of random variables {X1, X2 · · ·Xn} is by their
joint probability distribution. We’ll begin by focusing on discrete random variables, in which
case the joint probability distribution is described by a joint mass function (PMF)

px1,x2,...,xn = Pr(X1 = x1, X2 = x2, ..., Xn = xn)
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for all possible xj ∈ R(Xj) The marginal probability distribution for any one of these random
variables is given by:

p(Xj)x = Pr(Xj = x)

This is just viewing the random variableXj on its own, without regard to the other related
random variables.
We know that for independent random variables, the joint probability distribution is the
product of the marinal probability distributions

px1,x2,...,xn

n∏
j=1

pXjxj

Joint PMF is product of marginal PMF but this is not true for general collections of random
variables.
Examples where we have a collection of random variables which are not independent: Sam-
pling from a population with r sub-populations.

Suppose we have a population of n items, which can be decomposed into r subpopulations,
with nj items in subpopulation j, and n1 + n2 + · · ·+ nr = n

Sample k items from this population without replacement, and define Xj to be the number of
items selected from the jth sub-population, Are the random variable {Xj}rj=1 independent?
Can’t be because for example knowing X3 = 4 in the above sample would make X1 = 1
impossible, but knowing X3 = 3 would make X1 = 1 possible with positive possibility. So the
pmf of X1 depends on the value of X3 so those random variables can’t be independent.
Let Xj denote the number of items selected from the jth subpopulation, for j = 1, ..., r
The joint probability distribution will generalize from the hyper-geometric distribution using
the counting principle

px1,x2,...,xr =


(n1
x1

)(n2
x2

)×···×(nrxr)
(nx)

for x1 + x2 + ...+ xr = k0 ≤ xi ≤ ni
0 Otherwise

This is called the extended hyper-geometric distribution.remember to look the range of the
random variable
Suppose we just want to examine whether or not the random variables X1, X2, · · ·Xr are
independent from mathematics alone?
It sort of looks like a product of a function of x1 times a function of x2 times a function of x3 ..
but we concluded that these random variable can’t be independent. But the constraintsx1 +
x2 + ...+ xr = k ties the random variables together and makes the joint pmf not the product
of marginals.
To see this more precisely, let’s look at the marginal distribution for Xj
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pXjx = Pr(Xj = x) =

(
nj
x

)(n−nj
k−x

)(
n
k

) for 0 ≤ x ≤ k, nj

This is just the hyper-geometric distribution for sampling without replacement from a popu-
lation with two subpopulation: the jth subpopulation and everything else.

It is now clear that the joint PMF is not the product of the marginal PMF.That proves that
they are not independent.
Let’s now consider sampling from the population with r sub-population , but now with re-
placement.
Joint pmf is:

px1,x2···xr =

(
k

x1, x2, ..., xr

)
nx1

1 · n
x2

2 · · ·nxrr
nk

for 0 ≤ xi ≤ k, x1 + x2 + ...+ xr = k

This is the multi-nomial distribution, which can be written in more standard form by writing
the probability to choose from subpopulation i as pi = ni

n

px1,x2···xr =

(
k

x1, x2, ..., xr

)
px1

1 p
x2

2 × ...× p
xr
r for 0 ≤ xi ≤ k, x1 + x2 + ...+ xr = k

=
k!

x1!x2! · · ·xr!
px1

1 p
x2

2 × ...× p
xr
r

Again we have a constraint that ties together the values of the different random variables, so
this joint pmf does not look like it describes independent random variables, even though the
actual value of px1,x2···xr look like they factor
What is the margin distribution for Xj when I sample with replacement? Again we just think
about the jth subpopulation and “everything else” and so the probability distribution of the
number drawn from the jth subpopulation is equivalent to drawing from a population with
two sub-populations, which has a binomial distribution.

p(Xj)x = Pr(X = x)

=

(
k

x

)
pxj (1− pj)k−x for x = 0, 1, 2 · · · k

Joint PMF is not the product of the marginal PMFS
Above we computed the marginal PMFs from thinking about the model.But that shortcut
won’t always be possible, and you should also know the systematic brute force way to get
marginal PMFs from joint PMFs.
If I know the joint PMF px1,x2,...,xn of X1, X2, ...Xn

Then I can derive the marginal PMF of any of these random variables by:

pXjx = Pr(Xj = x) = Pr

 ⋃
x∈R(Xi),i 6=j

(X1 = x1, X2 = x2, ...Xj = xj , ...Xn = xn)

disjoint union

=
∑

xi∈R(Xi), i 6=j

Pr(X1 = x1,X2 = x2, ...Xj = xj , ...Xn = xn)

pXjx =
∑

xi∈R(Xi),i 6=j

px1,x2,...,x,...,xn x is in the jth place
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If you think about this for n = 2, it can be seen graphically and explains why marginal PMFs
are called marginal.

Let’s see how this systematic computation of marginal PMF from joint PMF works for the
example above with sampling with replacement from a population with r sub-populations.
Start with joint PMF:

px1,x2···xr =

(
k

x1, x2, ..., xr

)
px1

1 p
x2

2 × ...× p
xr
r for 0 ≤ xi ≤ k, x1 + x2 + ...+ xr = k

Let’s get the marginal PMF for X1 from this without thinking about the model anymore.

p
(X1)
X = Pr(X = x)

=
∑

0≤x1,x2···xr≤k,x1+x2+···xr=k

(
k

X, x2, ..., xr

)
px1

1

=
∑ k!

X!x2! · · ·xr!
pX1 p

x2

2 · · · p
xr
r

=
px1
x!

∑
....

k!

x2!x3!...xr!
px2

2 · · · p
xr
r
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10 Lecture Note(11.27) Conditional Probability Distributions

10.1 Conditional Probability Distributions

The joint probability distribution, though it has all needed information about the random
variables, can be awkward to work with. A related construction which is particularly useful
for calculations involving multiple random variables are conditional probability distributions.
For a general event A, we can define:

p(X|A)x ≡ Pr(X = x|A)
Pr({X = x} ∩A)

Pr(A)

A particular important case is to condition on the value of another random variable

p
(X|Y )
x|y ≡ Pr(X = x|Y = y)

=
Pr({X = x, Y = y}

Pr(Y = y)
(joint/marginal)

=
px,y

p
(Y )
y

This is known as the conditional probability distribution (or for discrete rvs, the conditional
PMF) of X given Y.It’s just the ratio of their joint probability distribution to the marginal
distribution of the conditioned variable Y.· · ·

Example of computing a conditional probability distribution:

Suppose we have two independent Poisson random variables X1, X2, with means λ1, λ2. What
is the condition probability distribution of X1 given a certain of their sum Y = X1 +X2 = y?
Two application of such calculation:

1. Consider a Poisson process, take an interval [a,b] and write it as the union of two sub-
intervals. Let Y be the number of Poisson points (successes) in the interval [a,b], and
X1, X2 be the number of successes (Poisson points) in each of the two sub-intervals

2. Or we could imagine having two independent Poisson processes, and looking at the total
number of successes from both over some time interval. Given that observation, how
many came from the first Poisson process.
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Recall from our previous discussion about the sums of independent Poisson random variable
that Y will also be a Poisson random variable with mean λ1 + λ2
Calculate the conditional PMF of X1 given Y (can’t be independent since)

Pr(A,B) = Pr(A ∩B)

p
(X1|Y )
x1|y ≡ Pr(X1 = x1|Y = y)

=
Pr({X1 = x1, Y = y}

Pr(Y = y)

Pr({X1 = x1, Y = y} re-express joint−−−−−−−−−→ Pr(X1 = x,X1 +X2 = y)

calculation in terms of independent RVS−−−−−−−−−−−−−−−−−−−−−−−−−→ Pr(X1 = x, x+X2 = y)comma means and

= Pr(X1 = x,X2 = y − x)

independence−−−−−−−−→ Pr(X1 = x) Pr(X2 = y − x)

= p(X1)
x pX2

y−x

Pr(Y = y) = p(Y )
y

=
e−λ1−λ2(λ1 + λ2)

y

y!
for y = 0, 1, 2 · · ·

BecauseY ∼ Poi(λ1 + λ2)

p(Xi)xi =
e−λi(λi)

x
i

xi!
for xi = 0, 1, 2 · · ·

Therefore

p
(X1|Y )
x1|y ≡ Pr(X1 = x1|Y = y)

=
Pr({X1 = x1, Y = y}

Pr(Y = y)

=
p
(X1)
x pX2

y−x

p
(Y )
y

=

e−λ1λx1
x!

e−λ2λy−x2

(y−x)!
e−λ1−λ2 (λ1+λ2)y

y!

=
λx1λ

y−x
2

(λ1 + λ2)y
y!

x!(y − x)!

=

(
y

x

)(
λ1

λ1 + λ2

)x( λ2
λ1 + λ2

)y−x
for x = 0, 1, 2, ..., y

Therefore,X1|Y ∼ Bin(Y, λ1

λ1+λ2
) Therefore, given Y = X1 + X2 = y, then X1 will be dis-

tributed binomially with y trials and success probability p = λ1

λ1+λ2

Tips In computing Pr(A,B) can use A to simplify B
Besides computing conditional probabilities on demand(i.e., when the problem is asking you
to calculate a property of a random variable given some partial)
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The key formula is the law of total probability, which in terms of PMFs looks like:

p(X)
x =

r∑
j=1

p(X|Bj)x Pr(Bj)

When {Bj}rj=1 is a partition of the sample space.
Often we define a partition by the value some other random variable Y takes

pXx =
∑
y∈Sy

p
X|Y
x|y p

(Y )
y

Example: Suppose X is the number of successes in N Bernoulli trials with success probability
p, where N is itself a random variable which is described by a Poisson distribution with mean
λ. What is the (marginal) probability distribution for X ?

Interpretation: Now imagine that we have a Poisson process with rate r and each Poisson
point is designated to be ”special” with probability p, independently of the designation of
every other point. Then after time t, N would describe the total number of Poisson points
with mean λ = rt, and X would denote the number of those point that are special.
figure

This procedure is called ”thinning a Poisson process”

p(X)
x = Pr(X = x) =

∞∑
n=0

p
X|N
x|n p(N)

n

We did this because knowledge of N makes the properties of X much easier to calculate.

pn(N) =
e−λλn

n!
for n = 0, 1, 2 · · ·

p
X|N
x|n =

(
n

x

)
px(1− p)n−x for x = 0, 1, 2, ..., n

pXx =

∞∑
n=x

(
n

x

)
px(1− p)n−x e

−λλn

n!

n=x because p
X|N
x|n = 0 unless x ≤ n

= e−λ
∞∑
n=x

n!

x!(n− x)!
px(1− p)n−xλ

n

n!

=
e−λpx

x!

∞∑
n=x

1

(n− x)!
(1− p)n−xλ

n

1
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Change dummy index to be m = n− x

=
e−λpx

x!

∞∑
m=0

λm+x(1− p)m

(m)!

=
e−λ(pλ)x

x!

∞∑
m=0

λm(1− p)m

(m)!

=
e−λ(pλ)x

x!
e(1−p)λ

pXx = e−pλ
(pλ)x

x!
for x = 0, 1, 2, ...which is a Poisson distribution with mean pλ

The above calculations, together with verification of certain independence properties (that
are fairly obvious) show that: Merging two independent Poisson with rates r1 and r2 gives a
Poisson process with rate r1 + r2.
Thinning a Poisson process with rate r and thinning probability p gives a Poisson process
with rate pr

10.2 Conditional Expectation

E[X|A] = µ(X|A) ≡
∑
x∈Sx

xp(X|A)x

It is just the average with respect to the conditional probability distribution of X given A
In particular, if we want to condition on the value of another random variable:

E[X|Y = y] =< X|Y = y >≡
∑
x∈SX

xp
X|Y
x|y

When we partition on the value of another random variable Y, we can write this as

EX =
∑
y∈SY

E[X|Y = y]pYy

or in the advanced notation:EX = E(E[X|Y ]).
Related to the law of total expectation, we have the following generalization

Eg(X) =

r∑
j=1

E[g(X)|Bj ]Pr(Bj)

Eg(X) =
∑
y∈SY

E[g(X)|Y = y]p(Y )
y

This follows from the standard law of total expectation because g(X) ≡ Z is just a random
variable too.
Example: Recall the problem we just studied.
Suppose X is the number of successes in N Bernoulli trials with success probability p, where
N is itself a random variable which is described by a Poisson distribution with mean λ. What
is the (marginal) probability distribution for X ?
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Let’s try this time to compute the mgf of X

MX(s) = EesX

=

∞∑
n=0

E[esX |N = n]p(N)
n

p(N)
n =

e−λλn

n!
for n = 0, 1, 2, ...

E[esX |N = n] = (pes + (1− p))n which is the mgf for Bin(n,p)

MX(s) =

∞∑
n=0

(pes + (1− p))n e
−λλn

n!

= e−λ
∞∑
n=0

(pes + (1− p))nλ
n

n!

= e−λ
∞∑
n=0

(λ(pes + (1− p)))n 1

n!

= e−λeλ(pe
s+(1−p))

= e−λ+λ(pe
s+(1−p))

= eλpe
s−λp

= eλp(e
s−1)

This is the mgf of a Poisson distribution with mean λp. Mgfs are unique descriptors of random
variables, therefore X ∼ Poi(λp)
Why did the mgf work so well here? Poisson processes have independence properties and
mgfs work well with independence.
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11 Lecture Note(11.30)

When you have a hybrid random variable, the appropriate ways to represent the probability
distribution is either with a CDF or a generalized PDF:

fx(x) = fc(x) +
∑
j

ajδ(x− xj)

Don’t write something like:

fX(x) =

{
kx−1.5

0.4

Hw 5 is due Friday, December 7.

11.1 Look back hw2 trapping the lizards

What is the mean and standard deviation of the number of lizard trapped the second week?
It seems like it would be helpful to know how many lizards are trapped the first week, and
organize the calculation by conditioning on the information. (Common technique in stochas-
tic/probability models with flow of time or sequence of events)
Let’s call X1 the number of lizards trapped the first week, and X2 the number of lizards
trapped the second week.
From the homework problem, the probability for a walking lizard to be caught in some trap
during a week is

p̃ ≡ 1− (1− p)t

X1 ∼ Bin(k, p̃)

X2|X1 ∼ Bin(k −X1, p̃)

Or in more concrete term:

p
(X2|X1)
(x2|x1)

=
(
k−x1
x2

)
p̃x2(1− p̃)k−x1−x2 for x2 = 0, 1, 2 · · · k − x1

So

EX2 = E[E[X2|X1]]

= E[(k −X1)p̃]

= kp̃− p̃EX1

= kp̃− p̃(kp̃)
= kp̃(1− p̃)

(btw the law of total expectation can be iterated: for number of lizards X3 trapped in third
week)

EX3 = E[E[X3|X2]] = E[E[E[X3|X2, X1]|X1]]
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11.1.1 Mean

Repeating the calculation for the mean using the more concrete approach:

EX2 =

k∑
x1=0

E[X2|x1 = x2]p
(X1)
x1

Since the pmf of X2 given X1 = x1 is binomial with k − x1 trials and success probability p,
we have:

E[X2|X1 = x1] = (k − x1)p̃

EX2 =

k∑
x1=0

(k − x1)p̃
(
k

x1

)
p̃x1(1− p̃)k−x1

= ...

= kp̃− kp̃2

11.1.2 Standard Deviation and Variance

Standard deviation: First compute the variance:

V arX2 = EX2
2 − (EX2)

2

EX2
2 = E[E[X2

2 |X1]]

= E[V ar(X2|X1) + ([X2|X1])
2]

= E[(k −X1)p̃(1− p̃) + ((k −X1)p̃)
2]

= kp̃(1− p̃)− p̃(1− p̃)EX1 + p̃2(k2 − 2kEX1 + p̃2EX2
1 )

= kp̃(1− p̃)− p̃(1− p̃)(kp̃) + p̃2(k2 − 2k(kp̃) + p̃2(kp̃)(1− p̃) + (kp̃)2)

=?

V arX2 = ...

But there is a shorter way. Law of total variance:

V ar(X2) = V ar(E[X2|X1]) + E[V ar(X2|X1)]

Let’s redo the calculation this way:

V ar(X2) = V ar((k −X1)p̃) + E[(k −X1)p̃(1− p̃)]
= (−p̃)2V ar(X1) + p̃(1− p̃)(k − EX1)

= p̃2kp̃(1− p̃) + p̃(1− p̃)(k − kp̃)
= p̃(1− p̃)k(p̃2 + 1− p̃)

Another illustration of how conditioning on an ”earlier” random variable can simplify a cal-
culation.
Let’s use law of total expectation and law of total variance to provide a new derivation of the
mean and standard deviation of a geometric random variable without using mgfs. The idea is
when you are describing properties of a stochastic process that is memory-less or resets itself
at certain moments, you can often calculate quantities through recursive formulas based on
what happens up to and after the resetting moments.
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Let X ∼ Geo(p) Note that Bernoulli trials are memory-less, so information is completely reset
after each trial. Let’s try conditioning on what happens until the first system reset, namely
after the first trial. Let A be the event that the first trial is successful. Then obviously {A,Ac}
is a partition of state space.

11.1.3 Law of total expectation:

EX = E[X|A]Pr(A) + E[X|Ac]Pr(Ac)
E[X|A] = 0

E[X|Ac] =?

By the resetting property, X|AC ∼ X + 1

E[X|Ac] = E[X + 1]

= EX + 1

EX = 0p+ (EX + 1)(1− p)
= (1− p)EX + (1− p)

0 = −pEX + (1− p)

EX =
1− p
p

11.1.4 Law of total variance:

V ar(X) = V ar(E[X|IA]) + E[(V ar(X|IA))]

Where we have the indicator function IA = 1 if A is true, else IA = 0

E[X|IA] = 0 if IA = 1

= EX + 1 =
1

p
if IA = 0

=
1

p
(1− IA)

V ar(X|IA) =?

Since X|A = 0, so V ar(X|A) = 0
X|AC ∼ X + 1 so V ar(X|Ac) = V ar(X)

V ar(X|IA) = V ar(X|A) if IA = 1

= V ar(X|Ac) if IA = 0
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V ar(X|IA) = 0 if IA = 1

= V ar(X) if IA = 0

V ar(X|IA) = V ar(X)(1− IA)

V ar(X) = V ar(E[X|IA]) + E(V ar(X|IA))

= V ar(
1

p
(1− IA) + E[V ar(X)(1− IA)])

= (−1

p
)2V ar(IA) + V ar(X)(1− EIA)

= (−1

p
)2p(1− p) + V ar(X)(1− p)

V ar(X) =
1− p
p2

That calculation may seem a bit involved, but it only required manipulations of statistics of
elementary random variables, and the idea generalizes to more complicated settings

11.2 Joint and Conditional Probability Distribution for Countinuous Ran-
dom Variables

Essentially all concepts that we developed for multiple discrete rvs carry over to continuous
rvs, just by replacing PMF concepts with PDF concepts, and integrating over the range of
possible values rather than
The only technical complication, in principle, is in the conditional distribution of one con-
tinuous random variable w.r.t another continuous random variable: We would like to write
down the conditional PDF of X given Y as:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
= joint PDF/marginal PDF

and that works. But its interpretation is delicate.

fX|Y (x|y) = lim
ε→0,δ→0

Pr(|X − x| < δ|Y − y| < ε

2δ

That is, it is the probability density for X being close to the value x, given that Y is close to
the value y.
Ususlly, but not always, we in fact can write this as:

fX|Y (x|y) = lim
δ→0

Pr(|X − x| < δ|Y − y|
2δ

That is, can we treat the event that Y is close to y by just acting as if Y=y. In practice this is
almost always true–just need that the event or random variable X in which you are interested
is not much affected by whether y ≈ y or Y = y. There are counterexamples in the book, see
the Borel paradox in a problem in DeGroot & Schervish Sec.5.10
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11.3 Markov Chains

Let’s now do some example calculations involving exponentially distributed random variables.
The calculations we will do have important application to Continuous-Time Markov Chains,
which are systems where the state of the system can change according to various ”reaction
channels” and each of these reaction channels has some rate associated to it. The rate can
depend on the state of the system. Continuous-Time Markov chain modeling assumption is
that the system is completely memoryless, other than knowing its current state:

• chemical reaction

• atomic transitions

• polymer growth

• ecosystems

• network states(social /computer)

Two kinds of dynamic models:

• Discrete-time Markov chain: Time is a discrete sequence of updates, and at each new
time, you prescribe the probability to go from one state to the other states.

• Continuous- time Markov chain: Let time flow continuously, and prescribe rates of
change for moving from one state to another (these are interpreted as one over the
average time the transition would take to happen.)

For continuous-time Markov chains, Memoryless assumption implies that each of the possible
reactions would occur after an exponentially distributed amount of time with a mean τi
corresponding to the rate ri = 1

τi
of that particular reaction. But if there are multiple

possible reactions, then when one reaction happens, it can interfere with another action.
So the dynamics of the system are governed by whatever reaction happens first, then you
update the state of the system, and then start over from the new state(because of memoryless
property). From this perspective, the simulation of Continuous-Time Markov chain models
amounts to the following(Gillespie method, kinetic Monte Carlo)

• List the possible reactions from the current state, associate a rate ri to reaction i and/or
a mean time τi = 1

ri
corresponding to the average length of time you would have to wait

for that particular reaction to occur.

• Generate for each of the reactions i = 1, 2, ...,m an independent exponentially distributed
random variable Xi with mean τi corresponding to the length of time you would have to
wait, in this particular case for that reaction to occur

• Find the smallest value T...
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• Correspondingly find the reaction whose time was first; that’s the reaction that actually
happens

J = argmin{Xi}mi=1

• Then, update the simulation by advancing forward by a time T, implementing reaction
J to update the state of the system, then repeat the cycle

Let’s calculate the probability distribution for T and J. For simplicity, we will just consider
the case of m=2 reations, but the results generalize to arbitrary m, as you can read in for
example Bertsekas Problem 3.39

1. Calculate the probability distribution of T = min(X1, X2) where X1, X2 are independent
exponentially distributed rvs with means τ1, τ2 Let’s use a CDF method, thinking of

T = g(X1, X2)

FT (t) = Pr(T ≤ t)
= Pr(min(X1, X2) ≤ t)
= 1− Pr(min(X1, X2) > t)

= 1− Pr(X1 > t,X2 > t)

= 1− Pr(X1 > t) Pr(X2 > t) Since,X1, X2 independent

Pr(X1 > t) = 1− Pr(X1 ≤ t)
= 1− Fx1

(t)

= 1− (1− e
t

τ1 )

= e
− t

τ1

Pr(X2 > t) = e
− t

τ2

FT (t) = 1− e−
t

τ1 e
− t

τ2

FT (t) =

{
1− e−

t

τ̄ for t ≥ 0

0 for t < 0

τ̄ = (τ−11 + τ−12 textNotethisisalwayssmallerthanτ1τ2.

We see from the CDF that T ∼ Exp(τ̄)

2. Now let’s calculate the probability distribution of J = argmin(X1, X2)

Pr(J = 1) = Pr(X1 < X2) = ...?

Two ways to proceed

(a) just calculate this as an event on the sample space generated byX1, X2: If fx1,x2
(x1, x2)

is the joint PDF of X1, X2 Then

Pr(X1 < X2) =

∫
(x1,x2)∈R2:x1<x2

fX1,X2
(x1, x2)dx1dx2
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(b) Or do a law of total probability conditioning on X1

Pr(x1 < X2|X1 = x1) = Pr(x1 < X2)

= 1− Pr(X2 ≤ x1)
= 1− FX2

(x1)

= 1− (1− e−
x1
τ2 )

= e
− x1
τ2

So Pr(X1 < X2) = τ−11

∫ ∞
0

e
− x1
τ2 e
− x1
τ1 dx1

= τ−11

∫ ∞
0

e−
x1
τ̄ dx1

= τ−11 τ̄

=
τ−11

τ−11 + τ−12

Thus, either way, Pr(J = 1) =
τ−11

τ−11 + τ−12

Pr(J = 2) =
τ−12

τ−11 + τ−12

That is, the probability for Xi to be the smallest random variable is inversely propor-
tional to its average. In the context of continuous-time Markov chain, the probability
that the next state change will occur of along a particular reaction channel is pro-
portional to its rate.

One can also show through a longer calculation that T,J are independent random
variables. The above results generalize directly to m > 2 indepdendent exponen-
tially distributed random variables. Therefore, it does seem feasible to simulate T,J
directly. It is arguable, depending on application, whether simulating T,J directly
is faster than simulating the m independent exponential random variables {Xi}mi=1.
The point is that simulating J can be expensive due to the need to construct and
sample from its probability distribution. See discussion of first reaction method and
next reaction method for more on this
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12 Lecture Note(12.4) Covariance and Correlation

12.1 Covariance and Correlation

Last few lectures we talked about how to do calculations involving multiple random variables.
Key ideas:

• Do probability and expectation calculations by iterative conditioning so you only have
to work with one random variable at a time, with the others treated as known.

• IF that does not seem to simplify the problem, think to work directly with the joint
PMF/PDF/CDF

–

Pr((X1, X2, · · · , Xn) ∈ A) =
∑

(x1,x2,...,xn)∈A

p)x1, x2, ..., xn

For discrete case; similar formulas for continuous or hybrid.

– LUS for multiple discrete random variables:

–

Eg(X1, X2, · · · , Xn) =
∑

(x1,x2,...,xn)

g(x1, x2, ..., xn)p(x1,x2,...,xn)

And similarly for continuous, hybrid rvs.

Condition probability distribution give complete description of how one random variable affect
another, so does the joint probability distribution. But these are essentially 2-dimensional
function(for 2 random variables) and n-dimensional functions (for n random variable), which
can be cumbersome to display or sometimes even work with, just as dealing with full proba-
bility mass function is sometimes more detail than desired

For a single random variable, the mean and standard deviation were two summary statistics
to condense the information in the full probability distribution.

For multiple random variables, we similarly want a simple descriptor of their relationship to
each other without have to depley

12.2 Covariance of a pair of random variable X,Y:

Cov(X,Y ) = E((X − EX)(Y − EY ))

= E(XY )− (EX)(EY )

If X, Y are independent that Cov(X,Y ) = 0 because then the expectation of the product can
be written as the product of the expectations of each fluctuation, and these are each 0. Also
Cov(X,X) = V ar(X)

If Cov(X,Y ) > 0, this corresponds to a ”positive correlation”between the random variables
X,Y meaning that an upward fluctuation in X tends to be associated with an upward fluctu-
ation in Y . Similarly for downward fluctuations. In other words, a scatter plot of Y vs. X
would have a best fit line with positive slope.
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If Cov(X,Y ) < 0, this corresponds to a ”negative correlation”between the random variables
X,Y meaning that an upward fluctuation in X tends to be associated with an downward
fluctuation in Y . And for downward fluctuation in X tends to be associated with an upward
fluctuation in Y
Note that while independent random variable have zero co-variance, one can easily construct
random variables that have zero co-variance but are not independent
Two random variables with zero co-variance are side to uncorrelated.

See Interactive Scatter-plot applet for exploring how co-variance and other statistical prop-
erties of two random variables are related to data values. Related to the co-variance is the
Pearson correlation coefficient:

ρX,Y = ρ(X,Y ) =
Cov(X,Y )

σXσY

This normalizes the co-variance to five a non-dimensional measure of the linear relation be-
tween the random variables eg −1 ≤ pX,Y ≤ 1.
Pearson correlation coefficient, when you square it, it gives you thr R2 measure of goodness
of a linear fit of Y vs X.
Some useful formulas Variance of a linear combination of random variables(not necessarily
independent!):

V ar

b+

n∑
j=1

cjXj

 =

n∑
j=1

c2jV ar(Xj) + 2

n∑
j=1

∑
j′>j

cjcj′Cov(Xj , Xj′)

alternatively:

V ar(b+

n∑
j−1

cjXj) =

n∑
j=1

c2jV ar(Xj) +

n∑
j=1

∑
j′ 6=j

cjcj′Cov(Xj , Xj′)

This extends to bi-linearity of co-variance:

Cov(b+

n∑
j=1

cjXj , b̃+

m∑
j′=1

c̃j′Yj′) =

n∑
j=1

m∑
j′=1

cj c̃j′Cov(Xj , Yj′)

Let’s illustrate the variance of sum formula to compute the variance of the hyper-geometric
distribution.
Recall that if X is a hyper-geometric random variable, based on making a selection of k items
without replacement from a population of n items, which has two subpopulations, with sizes
n1 and n2, then we can write:

X =
∑k

j=1XJ where Xj is a Bernoulli random variable that =1 if the jth sample (with

ordered sampleing) is an item from the first subpopulation, and is 0 otherwise
We already computed the mean using this setup. Now, we compute the variance. We’ll use
the variance of sum formula, but we need to know the variance and covariance of the Xj

Variance

V ar(Xj) = Pr(Xj = 1) Pr(Xj = 0)

=
n1
n

n− n1
n
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Co-variance

Cov(Xj , Xj′) = E(XjXj′)− EXjEXj′

EXj = Pr(Xj = 1) =
n1
n

= EXj′

E(Xj , Xj′) =?

At least two way to proceed. The conditional approach works if you believe in symmetry.
Suppose j < j′.

E(XjXj′) = E[XjXj′ |Xj = 1] Pr(Xj = 1) + E[XjXj′ |Xj = 0] Pr(Xj = 0)

= E[1Xj′ |Xj = 1] Pr(Xj = 1) + E[0Xj′ |Xj = 0] Pr(Xj = 0)

First line: Law of total expectation.
Second line: Use the given information to simplify what is to the left of the bar, but don’t
discard the condition!

E(XjXj′) = E[Xj′ |Xj = 1] Pr(Xj = 1) + 0

= Pr(Xj′ = 1|Xj = 1) Pr(Xj = 1)

Because EX = Pr(X = 1) when X is Bernoulli.

Pr(Xj) = 1
n1
n

Pr(Xj′ = 1|Xj = 1) Pr(Xj = 1) =
n1 − 1

n− 1

So by this conditioning approach:

E(XjXj′) =
n1 − 1

n− 1
× n1

n

The slick version:
E[XjXj′ ] = E[E[XjXj′ |Xj ]] = E[XjE[Xj′ |Xj ]]

From

Pr(Xj′ = 1|Xj = 1) Pr(Xj = 1) =
n1 − 1

n− 1

And Pr(Xj′ = 1|Xj = 0) = n1

n−1

E[Xj′ |Xj ] =
n1
n− 1

− 1

n− 1
Xj
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E[Xj′Xj ] = E[Xj(
n1
n− 1

− 1

n− 1
Xj)]

=
n1
n− 1

EXj −
1

n− 1
EX2

j

EXj = Pr(Xj = 1)

=
n1
n

EX2
j = 12 Pr(Xj = 1) + 02 Pr(Xj = 0)

= Pr(Xj = 1)

=
n1
n

E[XjXj′ ] =
n1
n− 1

n1
n
− 1

n− 1

n1
n

=
n21 − n1
n(n− 1)

=
n1(n1 − 1)

n(n− 1)

But in both approaches, the argument for calculating

Pr(Xj′ = 1|Xj = 1) =
n1 − 1

n− 1

Might be a bit obscure.
Let’s compute an alternative way, this time using joint PMF

E(XjXj′) =

1∑
xj=0

1∑
xj′=0

xjxj′p
(Xj ,Xj′ )
xj ,xj′

= 0 + 0 + 0 + 1× 1× p(xj ,xj′ )1,1

p
xj ,xj′
1,1 = Pr(Xj = 1 ∩Xj′ = 1)

We can just calculate this using classical probability with a sample space corresponding to
un-ordered selections of k objects without replacement from a population of size n.

Pr(Xj = 1 ∩Xj′ = 1) =
|Xj = 1 ∩Xj′ = 1|

|S|

=

(
n1

2

)(
n−2
k−2
)(

n
k

)
=

n1(n1−1)
2

(n−2)!
(n−k)!(k−2)!
n!

k!(n−k)!

=
n1(n1 − 1)

2

k!(n− 2)!

(k − 2)!n!

=
n1(n1 − 1)k(k − 1)

n(n− 1)
∗ ∗ ∗ ∗ ∗ ∗
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Let’s continue with the correct result from the iterated conditioning calculation:

E[XjXj′ ] =
n1 − 1

n− 1
× n1

n
Cov(Xj , Xj′) = E(XjXj′)− EXjEj′

=
n1 − 1

n− 1
× n1

n
− n1

n

n1
n

=
n(n1 − 1)n1 − n21(n− 1)

n2(n− 1)

=
nn21 − nn1 − n21n+ n21

n2(n− 1)

=
n21 − nn1
n2(n− 1)

Cov(Xj , Xj′) = −n1(n− n1)
n2(n− 1)

Negative correlation, which makes sense because selecting special objects one draw destruc-
tively affects whether special object is drawn on another draw.

Coming back to the hypergeometric random variable X =
∑k

j=1Xj

V ar(X) = V ar(

k∑
j=1

Xj)

=

k∑
j=1

V ar(Xj) + 2

k∑
j=1

k∑
j′>j

Cov(Xj , Xj′) =

k∑
j=1

n1
n

n− n1
n

+ 2

k∑
j=1

k∑
j′>j

−n1(n− n1)
n2(n− 1)

= k · n1
n

n− n1
n

+ 2 ·
(
k

2

)
− n1(n− n1)

n2(n− 1)

= k · n1
n

n− n1
n

+ 2 · k(k − 1)

2
− n1(n− n1)

n2(n− 1)

=
kn1(n− n1)(n− 1)− k(k − 1)n1(n− n1)

n2(n− 1)

=
n1(n− n1)(k(n− 1)− k(k − 1))

n2(n− 1)

=
n1(n− n1)(kn− k − k2 + k))

n2(n− 1)

=
n1(n− n1)(kn− k2)

n2(n− 1)

=
n1(n− n1)k(n− k)

n2(n− 1)

V ar(X)
n1(n− n1)k(n− k)

n2(n− 1)
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13 Lecture Note(Dec.7)

• Bernoulli trials

– compute probabilities of events associated to Bernoulli trials, particular numbers of
success ...

• Poisson process

• Properties and modeling applications of the following standard prbability

– Discrete uniform

– Bernoulli/Boolean

– binomial

• Calculations with single random variables (discrete, continuous, hybrid)

• Multiple random variables

– sums of random variables

∗ expectation of a sum is always the sum of the expectations

∗

13.1 Bivariate normal distribution

fX1,X2
(x1, x2) =

1

2π
√

(1− ρ2)σ21σ22
e

− (x1−µ1)2

σ2
1

+2
ρ(x1−µ1)(x2−µ2)

σ1σ2
− (x2−µ2)2

σ2
2

2(1−ρ2)

ρ is correlation coefficient(see previous class)

is defined to the joint PDF for bivariate normal/Gaussian random variables (X1, X2), with
state space S = R2.

The functional form looks complicated; actually the expression for the joint distribution for
n random variables in terms of matrices is much easier to understand, but that’s beyond the
scope of the class.

The important properties bivariate normal distribution are:

• the marginal distributions are normal, in particular X1 ∼ N(µ1, σ
2
1)

• The only parameter appearing in the joint PDF is ρ, which is the Pearson correlation
coefficient of X1 and X2

– Note that when rho=0 in a bivariate distribution, then X1 and X2 is independent.
Uncorrelated normal/ Gaussian random variables are independent(But this is not
true for general random variables.)

• in particular, the bivariate (and in general multivariate) normal distribution is completely
determined by knowing the means, variances. and co-variances(or correlations) between
the set of random variables in question.

– And in fact, one can prescribe the matrix of covariance between the random variables
in any way that makes it positive semi-definite
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– Multivariate distribution for n Gaussian random variables:

fX1,···Xn(x1 · · ·xn) =
1√

(2π)ndetC
e−

1

2
(~x−~µ)·C−1(~x−~µ)

where ~µ = (X1, · · ·Xn), ~x = (x1, x2 · · ·xn)
And C is the covariance matrix, and n× n matrix whose entries are

∗ Cij = Cov(Xi, Xj)

∗
Forn = 2 : c =

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]
– This property is hard to extend to other probability distributions, which is why the

Gaussian copula approach is often used to model multiple random variables which
are not Gaussian and not independent.

Some other features of bivariate Gaussian random variables, that can be seen on the Bivariate
Normal Experiment Applet:

The best-fit line through the data (X1, X2) generated by a bivariate normal is:

E[X2|X1] = µ2 +
ρσ2
σ1

(X1 − µ1)

which is describing the expected value of X2 as a function of X1.
This can be expressed more simply in terms of ”z-scores”

E[X2|X1]− µ2
σ2

= ρ
X1 − µ1
σ1

Also, the scatter of points about this best-fit line are given by the conditional variance formula:

bV ar[X2|X1] = (1− ρ2)σ22
If already known X1, and rho=1, the variance of X2 is 0 This expresses how the variance (as
a measure of uncertainty) of X2 is reduced by knowing the value of X1.
These formulas are very close to what is seen in linear regression; linear regression essentially
assumes that the noise in your data is joint normal.

• ρ is directly to the R2 measure of goodness of fit

More generally, there are concepts of nonlinear regression of X2 vs X1, and the abstract
mathematical encoding of nonlinear regression is to try and compute E[X2|X1]
One could ask the question, if I have a probability model for generating the data (X1, X2),
what deterministic function g would X2 = g(X1) give the best fit to the data?

Answer: g(X1) = E[X2|X1] gives the best fit in a least-squares sense.
Proof: Claim is that E[X2|X1] is the minimize of the functional E(X2 − g(X1))

2

Let g(x1) be any function other than E[X2|X1 = x1]
Then E(X2 − g(X1))

2 = E(X2 − E[X2|X1] − (g(X1) − E[X2|X1]))
2 Let A = X2 − E[X2|X1]

and B = (g(X1)− E[X2|X1])

(A−B)2 = EA2 − 2EAB + EB2

E(X2 − E[X2|X1]
2)− E((X2 − E[X2|X1])(g(x)− E[X2|X1])) + E(g(X1)− E[X2|X1])

2
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E((X2 − E[X2|X1])(g(X1)− E[X2|X1])) = 0

= E[E[(X2 − E[X2|X1])(g(X1)− E[X2|X1])|X1]]

E[(X2 − E[X2|X1])(g(X1)− E[X2|X1])|X1]

g(X1)− E[X2|X1] :function of X1

= (g(X1)− E[X2|X1])E[(X2 − E[X2|X1])|X1]

= (g(X1)− E[X2|X1])(E[X2|X1]− E[E[X2|X1]|X1])

= (g(X1)− E[X2|X1])(E[X2|X1]− E[X2|X1])

E(X2 − g(X1))
2 = E(X2 − (E[X2|X1])

2)− 0 + E(g(x1)− E[X2|X1]
2)

> E(X2 − E[X2|X1])
2

Unless g(X1) = E[X2|X1]

But computing E[X2|X1] isn’t so easy, especially in higher dimensions.

But if (X1, X2) are bivariate Gaussian, then E[X2|X1] is explicitly computable we did above,
and it’s linear. Extending these ideas to multiple dimensions, the optimal nonlinear fit to
data generated by a multivariate Gaussian distribution is always linear.
In fact, multivariate Gaussian distribution have a rigorous linear structure that makes them
relatively simple to work with:

• Any finite or countable collection of jointly Gaussian random variables X1, X2, · · · , can
be viewed as vectors in a Hilbert space where the co-variance between the random
variables acts like the inner product. As a byproduct, the norm on the vector space is
the standard deviation of a Gaussian random variable. (orthogonal: independent)

• Conditional expectations like E[Xk|X1, X2 · · ·Xm] act geometrically in this vector space
like projections on the subspace spanned by X1, X2, · · · , Xm

• Conditional variances express the distance squared of the random variables from the
their conditional expectation

These connections between multivariate Gaussians and linear algebra basically show that
common data processing procedures like linear regression and principal component analysis
work best when the underlying data is well modeled by a multivariate Gaussian
One more topic tail bounds. How to analize the simple random algorithm.
Sometimes, especially in analysis of algorithms, we want to have control over how bad a
random fluctuation can be, and not just know what a typical random fluctuation can be.
Two basic(not very useful) inequalities are :

• Markov inequality:

Pr(X > a) ≤ EX
a

if X ≥ 0

• Chebyshev inequality:

Pr(|X − EX| > a) ≤ V arX

a2

A useful corollary to Chebyshev:

Pr((|X − EX| > tσX)) ≤ 1

t2

Proof of Markov in-equality:
If X ≥ 0, then EX = E[X|X > a]Pr(X ≥ a) + E[X|X ≤ a] Pr(X ≤ a) ≥ aPr(X ≥ a) + 0
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14 Lecture Note(Dec.11)

14.1 Random algorithms:

reading: Mitzenmacher and Upfal, Probability and computing, Secs. 2.5,3.3

Let’s go back to Coupon Collector Problem.

The number of draws required to collect k distinct coupons from a population of m possible
coupons is:

X =

k∑
j=1

Xj

where Xj = 1 + Zj , Zj ∼ Geo(pj), pj = m−(j−1)
m , {Xj} are independent

Before we computed:

E =

k∑
j

= 1
m

m− (j − 1)

V ar(X) = V ar

 k∑
j=1

Xj


=

k∑
j=1

V ar (Xj)

Var(Xj) = Var(1 + Zj)

= Var(Zj) =
qj
p2j
qj = 1p j =

j − 1

m

Var(X) =

k∑
j=1

j−1
m

(m−(j−1)m )2

=

k∑
j=1

m(j − 1)

(m− (j − 1))2

The variance tells you typical fluctuations in the run time.
We can also use the mean and variance of an algorithm run time to obtain bounds on very
long runs

First, we observe (see the optional reading) that for k = m >> 1, then:

EX ∼ 2mln(m) +O(1)

V ar(X) ≤ π2m2

6

σX ≤
πm√

6
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Using just the mean of the fact that X ≥ 0, we can apply Markov’s inequality:

Pr(X ≥ a) ≤ EX
a

=
2m lnm

a

Pr(X ≥ tEX) ≤ 2m lnm

t2m lnm

=
1

t

Weak, only used information about the mean.
Using information about the variance allows us to use the somewhat better Chebyshev in-
equality.

Pr(|X − EX| ≤ a) ≤ V arX

a2

≤
π2m2

6

a2

=
π2m2

6a2

Pr(X ≥ tEX) ≤ Pr(|X − EX| ≥ (t− 1)EX)

≤ π2m2

6((t− 1)E)2

=
π2m2

6((t− 1)(2m lnm+O(1)))2
1/m2

1/m2

=
π2

6((t− 1)(2 lnm+O(1/m)))2

∼ π2

24(t− 1)2(lnm)2
as m→∞

This is a better bound than Markov inequality, if m = 106, this bounds the probability for
a run time twice as large as normal by 0.0002. But this is very conservative estimate for a
fluctuation that is 32 standard deviations from the mean

But this is still a weak bound. One can get a better bound by a much simpler argument.”union
bound”

Let {Yj}mj=1 denote the number of times that coupon j was selected after some number n
trials.

Pr(X > n) = Pr(∪mj=1{Yj = 0})

≤
m∑
j=1

Pr(Yj = 0)
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Under no assumptions: Pr(∪mj=1Aj) ≤
∑m

j=1 Pr(Aj)

Pr(Yj = 0) =

(
m− 1

m

)n
= (1− 1

m
)n

∼ e−
n

m ifm,n→∞Pr(X > n) ≤
m∑
j=1

e−
n

m

= me−
n

m

Lets try

n = tEX = t(2m ln(m) +O(1)

= 2tm(ln(m) +O(1))

Pr(X > tEX) ≤ me( − 2tm lnm+O(1)

m
)

= me( − 2t lnm+O(
1

m
)) ∼ me−2t lnm = mm−2t

Pr(X > 2EX) ≤ m1−2t

Random quicksort: See the text for description.
Describe its run-time properties; how many comparisons X need to be made for a list of n
distinct real number? Let’s start with expected runtime EX

X

n∑
i=1

∑
j 6=1

Xij

Where Xij is an indicator variable for whether the sorted items i and j are ever compared (No
pair is never compared twice since one of them must be a pivot, and once a pivot is done, it
is never compared again.)
(Let the sorted output be called (y1.y2, ..., yn))

EX =

n∑
i=1

∑
j 6=1

EXij

=

n∑
i=1

∑
j>i

EXij

EX = Pr(Xij = 1)

meaning that yiyj were ever compared
To compute this, consider the list of sorted numbers from yi to yj”: (yi, yi+1, ..., yj−1, yj);
remember i < j.
If pivots are chosen randomly, then consider which of the numbers on this list are first chosen
to be a pivot. Only if yi or yj are chosen as first as a pivot from this list will they ever be
compared. This happens with probability 2

j−i+1 = Pr(Xij) = EXij
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Expected runtime:

E =

n∑
i=1

∑
j>i

2

j − i+ 1
∼ 2n ln(n); see the optional text.

Now let’s suppose we wanted to worry about fluctuations in runtime
Variance of the runtime:

V ar(X) = V ar

 n∑
i=1

∑
j>i

Xij


Not at all clear that the Xij are independent, so that , we’d have to compute:

Var

 n∑
i=1

∑
j>i

Var(Xij)

 =

n∑
i=1

∑
j>i

V ar(Xij) +

n∑
i=1

∑
j>n

n∑
i′=1

∑
j′>i′,(i′,j′)6=(i.j)

Cov(Xij , Xi′j′)

Since Xij is an indicator variable:

Var(Xij) = Pr(Xij = 1) Pr(Xij = 0)

Cov(Xij , Xi′j′) = EXijXi′j′ − (EXij)(EXi′j′)

= Pr(Xij = 1, Xi′j′ = 1)− (Pr(Xij = 1))(Pr(Xi′j′ = 1))

Once you get the variance, Chebyshev...
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15 Appendix A More Reading

Digital textbook on probability and statistics
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16 Appendix B Relation Within Distribution
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